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Energy & Mass Transfer in Chemical Reactors and first principles calculations 
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Chemical Reaction Engineering and Reactor Design – Novel Experimental Approaches, 
Modeling, Scale-Up and Optimization 
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CATALYSIS FOR SUSTAINABLE PRODUCTION  

OF FUELS AND CHEMICALS 

Jens K. Nørskov 

Technical University of Denmark, jkno@dtu.dk 

The lecture will discuss some of the drivers for a new energy and chemical 

production industry. In particular, the rapidly decreasing cost of solar and wind 

electrical energy provides arguments for a shift towards using electrons to drive 

chemical transformations. In most cases we do not have suitable catalysts for 

electrocatalytic reactions of interest in the production of fuels and chemicals, and 

some of the main scientific challenges to catalyst design will be discussed. The 

lecture will also discuss approaches to molecular level catalyst design. Specific 

examples will include the electrochemical water splitting and the carbon dioxide and 

di-nitrogen reduction reactions. 
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AUTOTHERMAL REACTOR DESIGN FOR CATALYTIC PARTIAL 
OXIDATIONS 

Vemuri Balakotaiah1, Zhe Sun1, David H. West2 
1Department of Chemical and Biomolecular Engineering, University of Houston, 

Houston, TX 77204, E-mail: bala@uh.edu 
2SABIC Technology Center, Surgarland, TX 77478, E-mail: dwest@SABIC.com 

The terms “autothermal reactor” or “autothermal operation” (AO) are used to 

describe intentional operation of a reactor in the region of multiple steady-states 

(MSS). In AO, there is no heat addition to the reactor (except during start-up) and 

there is no intentional heat removal by cooling through reactor walls (except for some 

heat loss to surroundings). The existence of MSS, and in particular, an ignited high 

conversion (and high temperature) steady-state that may co-exist with one or more 

partially ignited or quenched steady-states, is essential for AO. In practice, MSS (with 

an ignited state) may be generated by either forced (convective) heat exchange 

between reactants and products with an internal or external heat exchanger (type I), 

periodic flow reversal (type II) or sufficient heat conduction (or thermal back-mixing) 

within the reactor (type III). Classical examples of autothermal catalytic reactors are 

the ammonia reactor (type I), reverse flow reactor for destruction of volatile organic 

compounds (type II) and gauze reactors used in HCN synthesis and ammonia 

oxidation (type III). In general, the first two types are suitable for low to moderate 

adiabatic temperature rise (∆Tad in the range 20 to 200 K) while the third type for high 

adiabatic temperature rise (in the 200 to 1200 K range). Some well-known 

advantages of AO are: compact reactor (or minimal catalyst requirement), and/or 

operation with low (and possibly ambient) feed temperature, and/or high per pass 

conversion of limiting reactant, and/or high productivity, especially for highly active 

catalysts. The present work deals with the design and analysis of reactors for AO of 

type III in the context of catalytic partial oxidations. 

In the first part of this work, we use a hierarchy of reactor models of increasing 

complexity to determine the boundary of the region of autothermal operation. 

Specifically, we show that for a fixed adiabatic temperature rise and space time, the 

largest region of AO (measured by the difference between feed temperature at 

ignition and extinction) is obtained when the heat Peclet number approaches zero, 

mass Peclet number approaches infinity, there is no intra-particle diffusional effect 
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and no heat loss (adiabatic case). From a practical point of view, this leads to a 

reactor design which is a thin and high conductivity bed with small particles (or if we 

use a monolith, a thin disk made-up of high conductivity substrate and properly 

chosen channel and washcoat dimensions). We also present some novel results on 

AO with longer beds (and any bed scale heat Peclet number) by using larger 

particles leading to multiple solutions at the particle level. However, when the particle 

size exceeds some critical value, intra-particle concentration gradients can reduce 

the effective activation energy and can eliminate the particle level multiplicity. In 

practice, intra-particle gradients can be avoided by using eggshell type catalyst, or for 

the case of monoliths, using appropriate washcoat thickness. We determine the 

particle (channel) size, catalyst layer (washcoat) thickness and other bed properties 

for obtaining the largest region of AO. Finally, we examine the impact of heat loss on 

the region of AO. 

In the second part of this work, we illustrate autothermal reactor design for two 

specific examples. The first case is that of Oxidative Coupling of Methane (OCM) for 

which the adiabatic temperature rise is very high (900 to 1200 K) and it is impractical 

to design a multi-tube reactor with heat removal. We show that AO is possible with 

shallow-bed or “pancake-reactor” for practical range of methane to oxygen ratios 

even with some heat loss. We compare the calculations with recent laboratory and 

pilot scale experimental results and examine the selectivity to C2 products on the 

ignited branches. The second example is that of an oxidative dehydrogenation of a 

hydrocarbon with moderate adiabatic temperature rise (200 to 400 K). For this case, 

we compare the traditional cooled multi-tubular reactor design (with high inlet feed 

temperature and near isothermal operation) with that of an autothermal reactor with 

ambient feed with no heat removal and near adiabatic operation. We demonstrate 

the advantages of AO, especially for highly active catalysts. 

Acknowledgements 
This work was supported by a grant from SABIC Americas Inc. to University of Houston.  
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MULTI-LEVEL BRIDGE BETWEEN REACTION ENGINEERING AND 
COMPUTATIONAL CATALYSIS 

Dionisios G. Vlachos 

Department of Chemical and Biomolecular Engineering,  
Catalysis Center for Energy Innovation (CCEI), and Delaware Energy Institute (DEI), 

University of Delaware, USA, vlachos@udel.edu 

Sustainability of chemical process requires more energy-efficient processes, 

utilization of renewable energy, such as solar and wind, to drive reactions and 

separations, better catalysts to improve activity and selectivity and thus to reduce 

separation cost and energy demand, new technologies that are more efficient, and 

our ability to tap into underutilized and renewable resources, such as offshore and 

stranded gas, biogas, and biomass. The distributed nature of many underutilized and 

renewable resources and the low energy density begs for distributed manufacturing, 

which can be achieved with modular systems and process intensification, such as 

plants on wheels. The design of such systems needs much more intimate process 

integration with high fidelity models. A cross cutting need in all of these systems is 

the need for better materials, whether catalysts, adsorbents, battery materials, or 

electrocatalysts, to improve performance, reduce cost, catalyst stability, and 

robustness.  

Over the past two decades, multiscale modeling has advanced tremendously, 

and several algorithms currently exist [1, 2]. Yet, our ability to apply first principles 

modeling to process design and materials discovery is seriously limited due to 

multiple challenges. In this talk, we will outline these challenges and introduce 

computational methods to overcome them. Specifically, we will discuss how to 

handle complex reaction networks with first principles accuracy but at a very low 

computational cost [1, 3], how to estimate and reduce errors in multiscale models [4], 

how to determine the active site of a catalyst [5], and how to predict novel 

combinations of active sites to drive activity and selectivity. The concepts of small 

data, correlations in energies and entropies, correlative uncertainty quantification, 

machine learning for catalysis, and atomistic optimization for improved activity and 

stability, will be discussed. These concepts will be illustrated with examples focusing 

on ammonia decomposition chemistry and electrocatalysis in alkaline media focusing 

on the oxygen reduction reaction (ORR).  
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It will be shown that model uncertainty is significant in process modeling and that 

experimental data fusion into multiscale models is essential. On the other hand, 

prediction of materials incurs very low error. Comparison of computational to 

experimental data demonstrates that a main uncertainty arises from the lack of 

knowledge and predictive ability of catalyst microstructure. We reveal correlations of 

vibrational frequencies [9] and discuss how in situ spectroscopy and machine 

learning can be integrated to provide the actual catalyst structure and close the 

materials gap. Finally, we will show that machine learning can be used with statistical 

mechanics to develop surrogate models that capture efficiently the active site 

microenvironment. Equipped with these methods, optimal catalyst prediction can be 

accomplished. It is shown that defect engineering can improve reactor performance 

by at least one order of magnitude.  
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METHANOL TO OLEFINS: CONCEPT TO COMMERCIALIZATION 

Clayton Sadler1, John Senetar2, Geoffrey Fichtl3 

Honeywell UOP, USA 
1 Clayton.Sadler@Honeywell.com,  
2 John.Senetar@Honeywell.com,  
3 Geoffrey.Fichtl@Honeywell.com 

 
As the global demand for light olefins steadily increases, particularly in 

developing markets, the need for new alternative technologies has emerged. 

Conversion of methanol to olefins (MTO) is a means to produce light olefins, ethylene 

and propylene from feedstock derived from sources other than crude oil or 

condensates. Methanol is widely produced from natural gas and coal at locations 

with abundant reserves. By using methanol derived from these cost-advantaged raw 

materials, MTO enables low production costs for ethylene and propylene, which are 

critical building-block molecules. 

This lecture will cover the development of this technology from the initial process 

concept based on a new molecular sieve, SAPO-34, to the commercialization of 

UOP’s Advanced MTO process. The focus will be on the reactor and regenerator 

technology selection, modeling and scale-up. There currently are three Advanced 

MTO units in operation, including the largest MTO unit in the world, and several more 

due to start up in the next two years. 
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SOLVENT SELECTION AND TUNING FOR SUSTAINABLE 
CHEMICAL PROCESSES 

Kai Sundmacher1,2, Steffen Linke2, Kevin McBride1 
1Max Planck Institute for Dynamics of Complex Technical Systems,  

Magdeburg, Germany, sundmacher@mpi-magdeburg.mpg.de 
2Otto-von-Guericke University Magdeburg, Germany 

In many chemical processes solvents are used for dissolving or diluting gaseous, 
liquid or solid substances. The majority of solvents are liquids at atmospheric 
conditions. The most important functionalities of solvents in the reaction steps of a 
chemical process are a) thermal control of highly exothermic reactions,  
b) stabilization of transition states, c) avoiding side reactions, d) homogeneously 
contacting reactants and catalysts. In downstream processing the addition of  
(anti-)solvents enables or supports the separation of components, e.g. in 
crystallization, precipitation, extraction, chromatography, and azeotropic distillation. 
When selecting a suitable solvent for a chemical process one must take into account 
multiple aspects, in particular 1) the full functionality of the solvent in the process,  
2) the (total annualized) costs when using the solvent in the process, and 3) the 
solvent impact on environment, health and safety (EHS). 

Over the past 100 years, a set of classical organic solvents was established, that 
contains substances with well-known properties satisfying major process-relevant 
functionalities. Due to stricter EHS regulations (e.g. REACH), and the paradigmatic 
shift towards Process Intensification (PI), today non-classical solvents are taken into 
account for many industrial applications [1,2]. The most important classes of these 
solvents are ionic liquids (IL), supercritical fluids (SCF), thermomorphic multicompo-
nent solvents (TMS), micellar solvents (MLS), deep eutectic solvents (DES), and 
perfluorocarbons (PFC). Among all classical and non-classical solvents, there is a 
subset of substances fulfilling sharp EHS criteria, called “green solvents” [3], which, if 
properly selected and used, offer a great potential for improving significantly both, the 
sustainability and the productivity of chemical processes. 

The target-oriented identification of a fully functional process solvent is 
achievable by systematic screening methods applied to existing data banks 
containing many substances potentially suitable as solvents. In the past, solvent 
selection was performed by use of semi-empirical concepts, e.g. the Hansen 
parameters, used in industrial chemistry for quite a long time [4]. Moreover, group 
contribution (GC) methods (e.g. UNIFAC) were used to optimize the molecular 
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structure of solvent molecules [5], partly together with the flowsheet structure of the 
whole chemical process by means of Mixed Integer Nonlinear Programming (MINLP) 
approaches. Over the last 25 years, quantum chemical (QC) computational 
approaches penetrated into the chemical engineering practice, in particular the 
COSMO solvation model [6]. By means of this model, electronic structure information 
of molecules is accessible at relatively low computational cost and usable for the 
prediction of thermodynamic properties of pure solvents and solvents in mixtures with 
other components [7]. 

Although the predictive power of theoretical methods has increased continuously, 
one still needs experimental data for validation purposes. To maximize the 
information content and relevance of these data for integrated solvent selection and 
process design, experiments should be harvested in an optimal manner. Once a 
single solvent or a combination of several solvents fulfilling key functionalities of the 
reaction and separation steps has been identified, the reaction-separation-recycle 
process concept can be derived. This concept is the starting point for the detailed 
process design, including fine tuning of the solvent properties by adjustment of 
individual temperature and pressure levels as well as chemical compositions in the 
different process units. 

The overall solvent selection and process design workflow sketched above is 
illustrated for an innovative reaction example of industrial interest, namely the 
conversion of long-chain olefins from renewable resources into amines via hydro-
formylation and subsequent reductive amination. Both reactions run in the liquid 
phase by use of homogeneous transition metal catalysts. 
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PREDICTION OF REACTION RATES FOR IMPROVED CATALYST 
DESIGN AT THE ATOMIC SCALE 

Manos Mavrikakis 

Department of Chemical & Biological Engineering, University of Wisconsin – 
Madison, Madison, WI 53706, emavrikakis@wisc.edu 

First-principles calculations have emerged as a key contributor towards the 

fundamental understanding of heterogeneous catalysis and the educated discovery 

of improved catalytic materials. By choosing the example of formic acid (HCOOH) 

decomposition on transition metals and alloys, we demonstrate how a deep 

mechanistic understanding of selective versus unselective routes can help with 

designing more selective catalysts. HCOOH is a simple molecule that is an abundant 

product of biomass processing and can serve as an internal source of hydrogen for 

oxygen removal and upgrading of biomass to chemicals and fuels. In addition, 

HCOOH can be used as a fuel for low temperature direct fuel cells. We start by 

presenting a systematic study of the HCOOH decomposition reaction mechanism 

starting from first-principles and including reactivity experiments and microkinetic 

modeling. In particular, periodic self-consistent Density Functional Theory (DFT) 

calculations are performed to determine the stability of reactive intermediates and 

activation energy barriers of elementary steps. Mean-field microkinetic models are 

developed and calculated reaction rates, orders, etc are then compared with 

experimentally measured ones. These comparisons provide useful insights on the 

nature of the active site, most-abundant surface intermediates as a function of 

reaction conditions and feed composition. Trends across metals on the fundamental 

atomic-scale level up to selectivity trends will be discussed. Finally, we identify from 

first-principles alloy surfaces, which may possess better catalytic properties for 

selective dehydrogenation of HCOOH than monometallic surfaces, thereby guiding 

synthesis towards promising novel catalytic materials. 



The NETmix Reactor: Concepts, Technology and Products 

José Carlos B. Lopes 

LA LSRE-LCM 
Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and 

Materials 
Faculdade de Engenharia, Universidade do Porto 

 Porto, Portugal  
NETmix is a novel static mixing technology consisting on a network of unit cells, 

comprising chambers interconnected by channels. The NETmix original conceptual 

model [2] formed the basis for a flow simulator coupled with chemical reaction to 

study the impact of macro and micro-mixing effects in the network. The chambers 

were modelled as perfectly mixing zones and the channels as perfectly segregated 

zones. A mixing intensity parameter was introduced as the ratio between the cham-

bers volume and the whole network volume. 

Network branching (left) and analogy with cascade of continuous-flow reactors (right) [1]. 

Experimental validation of the NETmix concept [2] was performed in a transparent 

unit constructed to enable the characterisation of the mixing mechanisms at the local 

scale. Tracer flow visualisation experiments showed that the mixing characteristics in 

the NETmix unit, depend on the Reynolds number both for macro-mixing and micro-

mixing, and a critical Reynolds number for the onset of mixing was observed. Chemi-

cal reaction experiments done using test reactions sensible to mixing, have shown 

selectivity dependence on the reactant’s injection scheme. For high Reynolds num-

bers, theoretical predictions obtained with the network model were found to be in 

agreement with experimental data. 

Chemical test reaction experiments using the visualization injection scheme [2]. 
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The NETmix reactor technology was successfully applied industrially in 2008 [3], for 

the synthesis of hydroxyapatite nanoparticles, HAp. The technology is capable of 

producing tailor-made HAp nanoparticles with controlled size and morphology, high 

surface areas, purity and crystallinity.  

The heat transfer performance of NETmix has been explored by carrying out hydro-

dynamics and heat transfer simulations [4]. Based on CFD simulations, it was shown 

that heat transfer capabilities are one order of magnitude greater than in other micro-

reactors, and 2–5 orders of magnitude greater than the most commonly used mixing 

devices in industry. 

Specific heat transfer capacity of typical heat exchangers equipment [4]. 

At the 2016 CHISA conference [5], it was reported that large heat transfer capacities, 

within the range of 1 000- 3000 W/m2/K, can be obtained in NETmix, capable of 

handling large exothermal reactions in multiphase gas-liquid systems, such as CO2 

hydrates formation. In 2017 a patent application was submitted for a new NETmix 

heat exchanger device [6]. 
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APPLICATION OF NEURAL NETWORKS  
TO APPROXIMATE AND GENERALIZE EXPERIMENTAL DATA 

Eugeniusz Molga 

Warsaw University of Technology, Faculty of Chemical and Process Engineering, 
00-645 Warszawa, Poland, ul. Waryńskiego 1 

Models based on artificial neural networks (ANNs) exhibit the rule-following 

behaviour without any explicit representation of those rules. A fundamental 

information on neural networks can be found in the literature of subject, particurally 

this concerning neurophysiology, biocybernetics, applied mathematics and 

informatics, however nowadays ANNs are also extensively employed in different 

branches of science and technology. The main applications of neural networks in 

chemical engineering and biotechnology are related to process control, data analysis 

and transformation as well as to process modelling. 

In this study a comprehensive survey of neural networks application in chemical 

engineering and biotechnology is given, in which approximation of data and 

modelling of processes are particuraly characterized. First, a fundamental theory of 

neural networks is presented and a special attention is focused on feedforward 

neural networks and their abbilities to approximate functional dependencies of any 

complexity. Then, two fundamental types of neural models, a global and a hybrid 

one, respectively are distinguished and described. With global neural models entire 

phenomenon, process or apparatus can be described with a single net, basing only 

on an appropriate set of experimental data without any identification of governing 

rules and/or mechanisms. These kind of models have quite good interpolation 

abilities, however rather poor ability to knowledge generalisation. With hybrid neural 

models – e.g. those applied to describe a performance of chemical reactors - all 

accesible knowledgy can be utilized (among others there are usually balance 

equations), while not sufficiently recognized elements or phenomena (in this case 

usually the reaction kinetics) are represented with neural net(s). Hybrid neural 

models are more robust than the global ones and they have much better abilities to 

generalise a knowledge.   

Finally new aspects of neural modelling are consisdered, which are related to 

posibility of utilization of ANNs for practical impemmentation of the third paradigm of 

chemical engineering. Since the end of the 20th century – despite the fact that both 
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praradigms, the first and the second one, are still widely used – the third paradimg is 

introduced. With this new paradigm the synthesis of many products can be currently 

examined from the view point of the plant, the reactor, hydrodynamics, transport 

phenomena, catalysis design, reaction chemistry and molecular modlling. This new 

approch is still widely discussed, improved and supplemented and the multi-scale 

modelling to design process for manufacturing products of strictly defined structure 

and properities is employed. Following a general concept of multi-scale modelling, 

data obtained at the nano-scale have to be transferred into the micro-scale model 

and further sucessively to the macro full-scale model. Such transfering is essential 

for efficiency of multi-scale modelling and ofers a significant improvement of process 

and reactors modelling and optimization. Application of ANNs to approximate the 

results obtained in nano-scale, then transfering them into the micro-scale can 

significantly helps to speed-up and improve the whole multi-scale procedure of 

modelling and designing. A case study is presented as an example to demonstrate 

the entire procedure and characterize the abilities of neural nets.  

In summary some conclusions for practical application of ANNs for modelling is 

given, among others:  

- the way of chosing a set of input-output signals representative for the 

considered problem,  

- the formulation of the optimal net architecture,  

- the choice of the learning method as well as learning data set(s).  

Also condensed characterisation of ANNs is presented and discussed. Some of 

them read as follows:  

- neural modelling is a method based on experimental data, so quality of these 

data decide on accurcy and robustness of neural models, 

- ANNs work as a “black box” and their parametres (weights) have no physical 

meaning. However ANNs do not develop the theory, they can help to 

undersand fundamental principles of the described phenomenon indicating the 

relevant input-output signals (variables) and important areas for fundamental 

investigations, 

- in conventional models values of their papameters contain always 

consequences of introduced assumptions and/or simlifications, while neural 

models are free of them. 
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INTENSIFICATION OF CATALYTIC PROCESSES WITH 
STRUCTURED CATALYSTS AND REACTORS  

Mario Montes, Oihane Sanz 

Applied Chemistry Department, Chemistry Faculty of the University of the Basque 
Country (UPV/EHU), San Sebastián, Spain, mario.montes@ehu.es  

Intensification of catalytic processes requires catalysts with high activity per unit 

of reactor volume. For this to be practiced, a suitable catalyst arrangement is also 

required in the reactor to ensure sufficient flow of reagents and products and heat 

transfer in the proper direction. These flows are controlled by the external diffusion 

processes (from the bulk fluid phase to the catalyst surface or the inverse), internal 

diffusion (in the porous network of the catalyst) and by the heat transfer within the 

catalytic bed. Such processes depend on both the properties of the fluid and the 

operating conditions as well as on the characteristics of the catalyst, the substrate in 

the case of structured catalysts and the reactor itself in the case of structured 

reactors such as microreactors. To enhance the external diffusion rate it is 

convenient to increase the linear velocity of the fluid and the turbulence, but looking 

for a trade-off with pressure drop that is favored by the same conditions [1]. As for 

the internal diffusion in the porous network of the catalyst, we were able to enhance it 

by increasing the diameter of the pores and reducing the diffusion path which is 

usually achieved by reducing the catalyst particle size. However, this reduction in 

particle size also leads to an increase in pressure drop in fixed-beds. Finally, heat 

transfer requirements are usually solved in fixed-bed reactors adopting multitubular 

configurations which provide higher surface-to-volume ratios. In response to the 

opposite effects of the process variables on diffusion limitations and pressure drop, 

structured catalysts and reactors have been developed. In particular, monoliths with 

parallel longitudinal channels have reached their highest degree of development in 

the catalytic converters for exhaust gas emissions control. But it is known that 

conventional ceramic monolithic catalysts operate under a quasi-adiabatic regime 

which is not suitable for chemical reactions with large thermal exchange. 

The purpose of this talk is to show several examples of the work developed in our 

laboratories that demonstrate the advantages offered by structured catalysts and 

reactors for the intensification of catalytic reactions with high thermal effect involved 

in fuel conversion processes as well as energy and environmental applications. 
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External diffusion. Its effects have been studied by comparing the performance of 

monoliths with longitudinal parallel channels, stacked wire mesh monoliths and 

foams on different reactions: VOC removal, selective butadiene hydrogenation and 

Fischer-Tropsch synthesis (FTS). In the case of meshes for VOCs removal, kinetic 

analyses explained their greater activity compared to longitudinal channel monoliths 

which was due to enhanced turbulence [2]. Metallic foams applied to the above-

mentioned reactions have always shown improvements compared to the longitudinal 

channel monoliths both in activity and selectivity due to the increased turbulence 

produced. The fundamental role of turbulence is also evidenced by the improvement 

obtained with the increase of the linear pore density (ppi) of the foams or the 

decrease of the mesh opening.  

Internal diffusion. Studies performed with both monoliths and foams in the FTS 

showed that thicknesses of the catalytic film exceeding 50 microns produced a 

significant decrease of the selectivity to C5+ and a slight CO conversion decrease. 

Therefore, the best strategy for the intensification of this reaction is the use of 

monoliths with very high cell densities, thus allowing to increase the geometric 

surface area exposed by the substrates and therefore reducing the thickness of the 

catalytic film for a given catalyst loading [3]. Another strategy to reduce the limitations 

of internal diffusion is to increase the porosity of the catalytic layer. Studies done 

incorporating macroporosity to the catalytic layer (hierarchical porosity) showed a 

paradoxical effect. Macroporosity resulted in a decrease of the catalytic coating 

density which produced an increase of the layer thickness for the same amount of 

catalyst. This led to an increased diffusion path that produced so negative effects that 

rendered irrelevant the incorporation of macroporosity [3]. 

Thermal conductivity effects. According to Tronconi et al. [4], the effective thermal 

conductivity of a structured catalysts depends fundamentally on the conductivity of 

the substrate and that of the solid deposited on the substrate. Our studies on 

methanol steam reforming with metallic monoliths of different cell density showed an 

a priori unexpected result: the methanol conversion increased as the cell density of 

the monolith decreased. Accurate temperature measurements showed marked 

temperature profiles for the same core monolith temperature depending on the cell 

density of the substrate. This caused the average temperature to increase as the cell 

density decreased due to the lower effective thermal conductivity. These results were 
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confirmed through CFD simulations thus explaining the experimentally observed 

methanol conversion evolution [5].  

The FTS is very exothermic, so temperature control is critical and a high thermal 

conductivity is necessary to avoid hot spots that produce temperature runaway leading 

to the sole and undesired production of CH4 and CO2. Conventional metallic monoliths 

fabricated by corrugation exhibited high thermal conductivity when manufactured with 

a very high cell density (> 2000 cpsi) or with a highly conductive alloy (such as 

aluminum instead of steel), which allowed a good control of the FTS temperature [6]. In 

these circumstances, a remarkable intensification of the process is possible since by 

increasing the temperature a high volumetric productivity of C5+ can be obtained, 

much higher than that presented in the literature and very close to that of the much 

more sophisticated and expensive monoliths obtained by extrusion [6]. 

Therefore, structured catalytic systems with metallic substrates offer substantial 

improvements over conventional catalytic reactors for reactions presenting high 

thermal exchange. By properly selecting geometry and materials, the turbulence and 

the thermal conductivity can be enhanced thus avoiding important limitations 

associated to transport phenomena of reactants and products together with a better 

control of the reaction temperature. 
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Invariants are functions of state variables that remain constant during the non-

steady-state transformations. Searching for invariants is one of the most important 

goals in many sciences such as chemical kinetics and chemical engineering [1-3]. 

The well-known invariants, widely used in chemistry and chemical engineering, i.e. 

element conservation laws and stoichiometric relationships, are linear [4, 5]. Since 

2011, other invariants of thermodynamic origin for first-order, reversible reactions 

have been found [6-9]. It was proven that they are related to the famous Onsager’s 

reciprocal relations [10, 11]. 

In this paper, the first non-Onsager thermodynamic invariant for non-linear 

chemical system was experimentally found using ‘the dual kinetic experiment’. In a 

batch reactor the esterification of ethanol with acetic acid was studied jointly with the 

hydrolysis of ethyl acetate. Figure 1 presents the non-linear invariant (K) dependence 

of the dual experiment in comparison with the quotients of esterification (QI) and 

hydrolysis (QII) which change in the course of reaction. The obtained experimental 

result is a justification of the theory developed previously [9]. 
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DETECTION IN KINETIC MODELLING STUDIES 
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Whenever a kinetic model structure is proposed to describe the dynamics of a 

reacting system, its validation relies on experimental data. Data are in fact required 

for: i) the estimation of the kinetic parameters appearing in the model [1]; ii) the 

validation of modelling hypotheses [2]. A frequent issue that modellers have to face 

in the course of the model validation activity is the presence of outliers in the dataset. 

Outliers represent data whose observation is extremely unlikely under the postulated 

modelling assumptions. The presence of a small fraction of outliers in the dataset 

(realistically between 1 % and 10 %) shall always be expected even if there is high 

confidence on the appropriateness of the modelling hypotheses and the experimental 

protocol is followed with extreme attention [3]. 

The detection and removal of the outliers from the dataset is of paramount 

importance in the kinetic model identification task. Outliers may be classified in three 

categories: 1) type-1: data affected by gross measurement errors [3]; 2) type-2: data 

collected in the presence of significant external disturbances (resulting in poor 

experimental reproducibility); 3) type-3: data collected outside the domain of model 

reliability (i.e. data collected at conditions where the modelling assumptions are not 

valid) [4]. A popular approach used to label “bad” data in kinetic experiments is the 

method of the material balance, which consists on quantifying the discrepancy in the 

atom balances between the inlet and the outlet of the reactor. Kinetic experiments in 

which this discrepancy is above a certain threshold (typically chosen between 5 % 

and 10 %) are considered too inconsistent to be used for kinetic modelling and are 

removed from the dataset. A major drawback of the material balance approach is that 

it only supports the detection of some type-1 and type-2 outliers.  

A model-based data mining (MBDM) method was recently proposed by the 

authors to prompt a more effective identification of the outliers [4]. The method can 

be regarded as a robust regression method that is insensitive to the presence of 

type-1, type-2 and type-3 outliers in the dataset [5]. The effectiveness of the MBDM 
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method is demonstrated in this work in a case study where the aim is the 

identification of a kinetic model of catalytic esterification of benzoic acid and ethanol 

in a flow microreactor [6]. A first order steady-state kinetic model was selected and 

fitted to a dataset consisting of concentration measurements collected in 33 

experiments. As one can see from Table 1, if no experiments are removed from the 

dataset, the model fails the -test with 95 % of significance, suggesting either the 

presence of outliers in the dataset or the presence of inappropriate modelling 

assumptions. The employment of a material balance on carbon as outlier detection 

criterion leads to the exclusion of 3 experiments from the dataset (i.e. experiments 

11, 28 and 31). Despite the exclusion of 3 experiments, the model still fails the 

goodness of fit test, suggesting that the model may be an inappropriate description of 

the system. The employment of MBDM as outlier detection method suggests the 

exclusion of only one experiment, i.e. experiment 8, leading to a significant 

improvement in the goodness of fit and the “validation” of the modelling hypotheses 

through the -test (see Table 1). Further analysis indicated that experiment 8 was a 

type-2 outlier, where the disturbance was of unknown nature. Data records showed 

that experiment 8 was the first performed after an overnight pause in the 

experimental campaign. A small leak in the system, sustained through the overnight 

interruption, may have caused experiment 8 to be an outlier. 
Table 1. Comparison of performance between outlier detection methods 

Outlier detection 
method 

Experiments removed 
from dataset 

95 % -test 
(value/reference) 

Goodness of fit 
Test Result 

None no exp. removed 113/83 Failed 
Material Balance (>5 %) exp. 11; 28; 31 87/77 Failed 

Model-Based Data Mining exp. 8 51/81 Passed 
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REDUCTION OF LUMPED REACTION NETWORKS BASED ON 
GLOBAL SENSITIVITY ANALYSIS 

Zoltán Till, Tamás Varga, Tibor Chován 

University of Pannonia, Department of Process Engineering, 10, Egyetem Street,  
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Introduction 
Chemical reactor design requires comprehensive information about the reactions 

present. For complex processes, however, detailed kinetic parameters are often 
unavailable because of the very large number of species and reactions present. In 
such cases different lumping methods are widely used to model the process. 
However, the reliability of the results are often not addressed. The number of defined 
component lumps or the number of reactions taking place between them are usually 
axiomatic. On the other hand, with the application of global sensitivity analysis (GSA) 
methods the uncertainty of model parameters can be quantitatively addressed. 
However, application of GSA is not straightforward as multiple different methods are 
available. Pianosi et al. suggested that good practice in GSA has the following three 
attributes: comparison of multiple GSA methods, assessing the robustness of GSA 
methods and lastly, visualizing the results [1]. Therefore, it is necessary to compare 
the performance of different GSA methods. 

Numerical methods 
In this work, uncertainty of reaction kinetic parameters of pyrolysis of real platic 

waste is studied. The performance of five different GSA methods (Table 1) is 
compared on an exampe of a lumped reaction network consisting six lumps and ten 
reactions. The suggested network was constructed arbitrarily but it was proven that it 
and the underlying model can reproduce the experimental results. 

Results and conclusion 
Performance of GSA methods are compared in Table 1. Comparison was made 

based on convergence (i.e. necessary sample size, also directly proportional to 
computational cost) and ease of implementation (e.g. how many parameters have to 
be manually tuned in order to apply them). Based on the results, the Fourier 
Amplitude Sensitivity Test raises most interest as it does not have any additional 
parameters to be manually set or tuned (even the sample size is determined by the 
number of search variables) and has the best convergence. It is suitable for model 
reduction purposes, i.e. it can be applied to eliminate reactions for that the sensitivity 
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MECHANISM OF CO OXIDATION OVER Pt-GROUP METALS  
UNDER HIGH PRESSURE CONDITIONS:  

LANGMUIR–HINSHELWOOD OR MARS–VAN KREVELEN? 

Slinko M.M.1, Makeev A.G.2, Luss D.3 
1Institute of Chemical Physics, Russian Academy of Science, Kosygina Str. 4, 

Moscow 117334, Russia, slinko@polymer.chph.ras.ru 
2Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State 

University, Moscow, 119991, Russia 
3Department of Chemical & Biomolecular Engineering, University of Houston, USA 

Although oxidation of CO seems to be a rather simple reaction, the fundamental 

understanding of the reaction mechanism under atmospheric pressure is still matter 

of debate [1]. In the literature there is still no general agreement concerning the more 

active state of Pt, Pd and Rh catalysts in CO oxidation reaction. Gao et al. [2] 

showed that the most reactive phase of Pt and Pd at low and high pressures is 

identical and corresponds to the reduced metal. On the other hand, it was claimed 

that the rate of CO oxidation is higher when the surface is oxidized [3]. In some 

cases, the conclusions have been based on the fact that the amount of surface oxide 

matched the catalytic activity during the oscillatory behavior and is thus responsible 

for the catalytic conversion [4,5]. Moreover, basing on the study of the oscillatory 

behavior during CO oxidation over Pd carried out by such modern methods as in-situ 

high-pressure STM [4] and operando surface x-ray diffraction (SXRD) [6] the authors 

concluded that the traditional Langmuir–Hinshelwood (L-H) mechanism was not valid 

any more, and the new Mars–van Krevelen (M-vK) mechanism had to be used 

instead. 

The main goal of this work is to demonstrate that the simplest well-known Sales- 

Turner-Maple (S.T.M.) model [7], which is based on the L-H mechanism, can 

describe the main experimental findings regarding the CO oxidation reaction at high 

pressures. This model shows that in a high activity state the catalyst surface is 

partially oxidized, but this does not mean that the oxide phase is more active than the 

metallic phase.  

Consider the conventional L-H model of CO oxidation on Pt surface: 

 2

2 2
1 * 3 52 2O

O O O CO
d k P k k
dt
       ;   2 * 4 5

CO
CO CO O CO

d k P k k
dt
       . (1) 
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In summary, there is no experimental evidence that the M-vK mechanism is valid. 

Also, using the kinetic S.T.M.-model coupled with a CSTR reactor model, we could 

explain the main experimental controversies [1] regarding the temperature 

dependences of turnover frequencies at various PO2/PCO ratios. 
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THE KINETICS OF FLUE GAS PURIFICATION FOR PRESSURIZED 
OXY-COMBUSTION 

Gregory Yablonsky1, David Stokie1, Benjamin Kumfer1, Piyush Verma1,  
Yujia Min2, Yaguang Zhu1, Young-Shin Jun1, Akkihebbal K. Suresh2,  
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Pressurized oxy-combustion is a promising new technology for coal-fired power 

production that can deliver high combustion efficiency with a concentrated CO2 

stream suitable for carbon sequestration or utilization. Combustion takes place at 

elevated pressure, e.g. 15 bar, such that the dew point of the combustion flue gas is 

raised and the latent heat is recovered. Prior to final compression for storage or 

utilization, gaseous pollutants (primarily NO, NO2 and SO2) must also be removed 

from the combustion exhaust stream, otherwise harmful acid condensation can occur 

in downstream equipment. Pressurized oxy-combustion provides an opportunity for a 

novel method of pollutant removal, which uses direct water contact for flue gas 

cooling and latent heat recovery combined with simultaneous purification via pollutant 

adsorption and complex liquid phase chemistry.  

Our experiments investigate the interaction between nitrite and sulfite in the liquid 

phase, quantifying parallel reaction rates for the formation of nitrous oxide (N2O) and 

hydroxylamine disulfonic acid (HADS). The results determine the effects of pH, nitrite 

and sulfite molar ratio, and temperature in the initial formation period of N2O and 

HADS, determining the liquid species composition at each concentration, 

temperature and reaction time applicable for commercial scrubbing columns. A 

kinetic model was developed from these results, describing the dependencies 

experimentally measured. 

The larger prototype column has also been constructed and utilizes the liquid 

phase kinetics and process model to scale up the liquid chemistry as function of gas 

pressures, temperatures, flowrates, and pollutant concentrations equivalent to a 100-

kWth oxy-combustor output. It’s primary objective is to optimize parameters to 

maximize flue gas purification while controlling liquid discharge temperature and heat 

recovery. The practical implications can lead to a reduction in costs and risk 
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associated with flue gas purification and carbon capture, and can provide an 

additional efficiency gains for new, low CO2 coal power plants. 

The scale of these experiments have been linked via an an ASPENTM model to 

provide a numerical sub-model for integration into a full-scale process model of a 

Staged, Pressurized Oxy-Combustion power plant. 
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DIMETHYL ETHER CONVERSION TO GASOLINE GRADE 
HYDROCARBONS OVER ZSM-5:  

KINETIC STUDY IN A RECYCLE REACTOR 
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1Fraunhofer IMM, Carl-Zeiss-Str.18-20, Mainz, Germany 
2Eindhoven University of Technology,  

Den Dolech 2, 5600 MB Eindhoven, The Netherlands 

Kinetic models for the conversion of methanol to gasoline grade hydrocarbons 

(MtG) have limited applicability in case dimethyl ether (DME) is used as feedstock. 

Considering the increasing interest of DME-to-hydrocarbons (DtH) conversion, we 

have developed a new kinetic model to describe the conversion of DME to 

hydrocarbons over a ZSM-5 catalyst. 

It is widely accepted that the conversion of oxygenates to hydrocarbons is well 

described by the dual-cycle mechanisms. The relevant reactions of this mechanism 

were considered in the kinetic model presented in this research. These reactions 

include the formation of aromatic intermediates (polymethylbenzenes), which remain 

adsorbed in the zeolite cages (A); the dealkylation of these intermediates to ethylene 

and propylene (B); the methylation of low molecular olefins to hydrocarbons of longer 

chain length (C); the hydrogenation of C2-C4 olefins to the corresponding saturated 

hydrocarbons (D); and the dimerization reactions between C3-C4 olefins towards 

higher hydrocarbons (E). The kinetic investigations were performed in a gradientless 

fixed-bed external-recycle over a wide range of conditions, with temperatures from 

325 °C to 375 °C, weight hourly space velocities (WHSV) from 25 h–1 to 125 h–1, a 

total pressure of 1 bar using undiluted DME as feed. 

The performance of the new model has been assessed by calculation of kinetic 

parameters and evaluation against physicochemical constraints. Moreover, this 

model was compared to more simplified models reported in literature. The newly 

developed model allowed better description of the experimental results. 
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METHANOL-TO-OLEFINS (MTO) ON ZSM-5:  
SINGLE-EVENT KINETIC MODELING, MECHANISTIC ANALYSIS 

AND REACTOR DESIGN 
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Lower olefins are widely applied in the chemical industry. The expected growth of 
their demand cannot be satisfied by current synthesis routes like fluid catalytic 
cracking or steam cracking [1]. An alternative production method is methanol-to-
olefins (MTO) where shape-selective zeolites convert methanol to DME, water, 
olefins, paraffins and aromatics [2]. In industrial applications, a part of the product 
spectrum is recycled in order to increase the propene selectivity (methanol-to-
propene, MTP) [3]. By doing this, most of the methanol is consumed via olefin 
methylation. Current research shows that this mechanism seems not to be fully 
understood yet [4]. Therefore, in this study, microkinetic modeling should afford 
mechanistic insight which is then applied to reactor design. 

Experimental data is obtained with a single tube quartz glass reactor which is 
filled with a commercial ZSM-5 catalyst and SiC. Methanol and butanol, diluted with 
nitrogen and water, are used as feed to simulate the industrial co-feed conditions. 40 
different combinations of temperature, feed partial pressures and total volumetric flow 
rate are analyzed at five different contact times each. 

A microkinetic model which follows the rules of the single-event concept [5] is 
created. For this, an existing model for olefin cracking [6] is extended with the 
methanol related reactions. Different versions of the single-event model for MTO are 
generated: for example, the methylation via an Eley-Rideal mechanism is compared 
with a Langmuir-Hinshelwood approach or a description via a co-adsorbed olefin [7]. 
Moreover, the role of DME as competing methylation agent is investigated. The 
microkinetic methodology is confronted with a simpler model from literature [8] where 
mechanistic routes are included, but also a lumping of species is performed. In a next 
step, the most suitable single-event kinetic model is enriched with side product 
formation [2] and used for reactor design as it allows vast extrapolation possibilities. 
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Figure 1. Parity plots for oxygenates (left) and propene (right) 
resulting from a single-event kinetic model for MTO 

Figure 2. Simulated (lines) and measured 
(symbols) data;  

pMeOH = 114 mbar, pC4 = 49 mbar 
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The influence of different process parameters like the number of adiabatic beds, the 
temperature rise and both composition and amount of the recycle is analyzed. 

Figure 1 shows that the agreement of the single-event kinetic model is high when 
the methylation is expressed with a co-adsorbed olefin and when a second, faster 

route for methylation via 
DME is allowed. The 
description of the 
compounds along the 
reactor can be seen in 
Figure 2. The strength of 
single-event microkinetics 

in comparison to the 
literature benchmark case 

[8] is the reduction of the number of unknown 
parameters [5] which yields significant values 
with a clear physical background. 
Nevertheless, some of the assumptions of 
Huang et al. [8] can be confirmed, for 
example the missing equilibration between 
oxygenates. 

In summary, the single-event concept 
allows to describe the reactivity of MTO in a 
microkinetic way with high agreement and a 
reasonable number of estimated parameters. Thus, the resulting model can be 
applied to reactor calculations. 
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DEHYDROGENATION ON Cr-Al CATALYST 
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Industrial processes of nonoxidative dehydrogenation of light paraffins are among 

the most important and widely used ways to produce light olefins, which are a 

feedstock for organic synthesis and production of polymerization products. 

Chromia/alumina (Cr-Al) catalysts are commonly used in dehydrogenation processes 

because of their high activity [1]. It is of great importance to know the kinetics of 

dehydrogenation reactions to provide ways for dehydrogenation catalysts and 

technologies optimization. 

The aim of the work is to study reaction routes of n-butane dehydrogenation over 

Cr-Al catalyst, to develop the kinetic model and to determine the kinetic parameters. 

Laboratory replica of industrial dehydrogenation catalyst with ca. 13 wt. % Cr [2] 

was used in this work. Experiments were performed in a fixed-bed reactor at 

temperatures 550-625 °C, contact times 0.1-0.9 s, initial partial pressures of n-butane 

0.1-0.2 bar and different reaction times up to 45 minutes. 

Dehydrogenation reactions take place together with cracking and coke deposition 

on the catalyst surface [3], and to a consequent progressive deactivation. These side 

reactions are more notable with an olefinic than with a paraffinic feed, which is taken 

into account in the reaction pathways (Fig. 1). 

Figure 1. Pathways of n-butane dehydrogenation over Cr-Al catalyst 

To estimate the rates of different reactions from Fig. 1 the mathematical modeling 

was performed. The model of the unsteady-state plug flow reactor taking into account 

the effect of catalyst deactivation by coke formation was used. 
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KINETIC ASSESSMENT OF THE OXATIVE DEHYDROGENATION OF 
ETHANE USING A NiSnO CATALYSTS 

Carlos Alvarado C.1, Joris W. Thybaut2, Richard S. Ruiz1, Ariadna A. Morales1, 
Carlos O. Castillo-Araiza1 

1Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Área de 
Ingeniería Química, Autónoma Metropolitana – Iztapalapa, caralvcam@hotmail.com 

2Ghent University, Laboratory for Chemical Technology, Technologie park 914, 
B-9052 Ghent, Belgium 

Ethane oxidative dehydrogenation (ODH-C2) is one of most promising alternative 

ethylene production pathways compared with conventional processes [1-3]. Two 

main challenges are identified with respect to the implementation of ODH-C2 at the 

industrial level: (1) the design and kinetic characterization of a catalyst leading to a 

high activity and selectivity to ethylene; and (2) the design of the industrial reactor 

accounting for the thermodynamic and kinetic properties of the reaction. Due to their 

selectivity to ethylene, nickel (Ni) and vanadium (V) based catalysts have been 

identified as the most promising ones for the ODH-C2; nevertheless, their overall 

activity levels remains still low to commercially exploit these materials. 

In this work, the ODH-C2 is performance over a high selectivity NiSnO mixed 

oxide, which is synthesized by the evaporation method reported elsewhere [4]. To 

overcome its limitations with respect to activity, this NiSnO mixed oxide is kinetically 

characterized in a more extended range of operating condition, i.e., at total pressures 

from 1 to 5 bar, temperatures from 350 to 450 °C, O2 inlet concentration from 3 to  

9 mol %, and W/FAo from 20 to 70 gcat-h-mol–1 to enhance the ethylene production 

towards industrially relevant levels. The NiSnO catalyst is evaluated in a 

microreaction unit, MICROMERITICS PID ENG & TECH model MA12216. The 

NiSnO catalyst is kinetically evaluated via uses an experimental design of the 

rotatable composite central type, based on a response surface method. The 

response variables are the ethane conversion (XC2H6) and the selectivity to ethylene 

and carbon oxides (Si), whereas the factors are total pressure, temperature, W/FAo 

and O2 inlet concentration. The catalyst stability before actual kinetic experimentation 

is evaluated in the reaction unit at specific operating conditions (W/FAo = 47.5, 

%O2 = 6 % and T = 400 °C) during ca. 6 h; herein the ethane conversion and 

ethylene selectivity are maintained during this time at 50 % and 60 %, respectively. 
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Kinetic experiments, performed under intrinsic conditions, lead to ethylene selectivity 

from 40% to 65%, for an ethane conversion range from 10 % to 30 %, respectively.  

Finally, to relate operating condition with reaction rates and the corresponding 

reaction mechanism taking place at the investigated operating conditions, kinetic 

models based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) and Mars-van 

Krevelen (MvK) formalisms are developed following the pseudo-steady state 

approach and the reaction scheme presented in Figure 1. Physicochemical and 

statistical criteria are employed to evaluate LHHW and MvK formalisms to elucidate 

the macroscopic mechanism involved in the ODH-C2 over a NiSnO. 

 

Figure 1. Reaction scheme for ODH-C2 Figure 2. Temperature effect on XC2H6 and SC2H4 for  
ODH-C2, W/FAo = 44 gcat*h/mol and 3 % mol O2 
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KINETICS OF OXYGEN EXCHANGE BETWEEN 
NONSTOICHIOMETRIC OXIDES AND GAS PHASE: ANALYSIS OF 

GIBBS ENERGY RELATIONS IN TERMS OF CONTINUOUS 
HOMOLOGOUS SERIES 

Stanislav Chizhik1,2, Mikhail Popov1, Alexander Nemudry1 
1Institute of Solid State Chemistry and Mechanochemistry SB RAS,  

 Kutateladze 18, Novosibirsk 630128, Russia, E-mail: csagbox@gmail.com 
2Novosibirsk State University, 630090, Pirogova 2, Novosibirsk, Russia 

Nonstoichiometric mixed ionic-electronic conducting (MIEC) perovskites (ABO3–) 
are applied as electrode materials in order to substitute expensive platinum in solid 
oxide fuel cells, and as membrane materials in catalytic membrane reactors providing 
simultaneous separation of oxygen from the air and the partial oxidation of light 
hydrocarbons, e.g., natural gas to value-added products. In this respect study of the 
mechanism and kinetics of oxygen exchange between the MIEC oxides and a gas 
phase attracts attention of many researchers for several decades [1-3]. Despite some 
progress in understanding the mechanism of oxygen exchange there are still many 
blind spots in this field that do not allow formulating general principles and stages of 
processes that determine the reaction on the oxide surface [4]. One of the main 
reasons is due to the fact that MIEC oxides are highly nonstoichiometric compounds 
allowing for wide variation in oxygen non-stoichiometry () in different conditions of 
the kinetic experiments which significantly affects measured kinetic parameters. In 
this work we propose to consider MIEC oxides with different stoichiometry as 
different compounds forming continuous series of homologues that are involved in 
related reactions of oxygen exchange with the gas phase.  

Following the proposed approach, the kinetic measurements are conducted in the 
iso-stoichiometric regime implying selection of conditions necessary to keep a 
constant non-stoichiometry  at different temperatures. An advanced technique of 
oxygen partial pressure relaxation (OPPR) is used to improve reliability of the 
measured rate constants [5]. Original experimental setup is used to carry out the 
kinetic experiments by OPPR technique (Fig.1). 

One of the important results of the study of homologous series is the 
establishment of fundamental principle of Gibbs energy relation between the free 

energy of activation aG  and standard free energy change 0
rG  of the reaction for 

related reactions:   0
ra GG  which are commonly referred to as Linear Free-

Energy Relationship (LFER). 
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SELF-IGNITION DELAY OF METHANE-ALKANE FUEL 
COMPOSITIONS 

Arutyunov V.1,2, Troshin K.1,3, Nikitin A.1,3, Kiryushin A.2, Belyaev A.1,3,  
Ozerskii A.1,3, Komarov I.1,3, Strekova L.1 

1Semenov Institute of Chemical Physics RAS, Moscow, Russia, 
v_arutyunov@mail.ru 

2ONCLEN LLC, Moscow, Russia 
3Noncommercial Partnership Center of Pulse Detonation Combustion,  

Moscow, Russia 

The problem of utilization of oil associated gas (OAG) which is a mixture of 
methane with alkanes from C2 to C5 or higher remains one of the most serious 
environmental and economic problems of the oil industry. Despite all efforts and 
legislative measures, the amount of the world OAG flaring doesn’t decrease. The 
problem has a global scale, and the main reason for the lack of progress in reducing 
the OAG flaring is the lack of cost-effective low tonnage technology of its use.  

A significant part of OAG, in principle, could be used as fuel to meet the power 
and heat demands of gas-producing companies and the regions. However, this is not 
a trivial problem. Unlike marketable natural gas OAG does not have any particular 
composition. Not only are there no two fields with the same gas composition, but the 
associated gas composition from the same field changes during development. 

The presence of a wide range of C2+ hydrocarbons in OAG, whose reactivity 
differs by orders of magnitude, hinders its effective use in modern power plants. The 
admixture of heavy components with low octane (methane) numbers makes OAG 
prone to detonation and prevents engines from reaching the rated power. The use of 
such mixtures increases the gumming and sooting processes in the engine, i.e., 
reduces its life. Existing methods for removing heavy components from hydrocarbon 
gases require complex equipment, high energy expenditure and are not justified for 
small (less than 10 MW) power plants. 

Recently we have suggested principally new method for reducing the content of 
heavy components in OAG by their selective oxidative conversion to lighter high-
octane compounds [1-3]. However, in all technologies, the required degree of OAG 
cleaning is closely related to costs, so that the most important issue in determining 
their costeffectiveness is the maximum permissible residual content of C2+. In turn, it 
requires reliable information on the effect of these impurities on methane self-ignition. 
Available literature data on the self-ignition delay of such mixtures are insufficient.  
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KINETIC STUDY OF CARBON DIOXIDE CONVERSION OF METHANE 
ON MEMBRANE CATALYSTS UNDER KNUDSEN DIFFUSION 

CONDITIONS 

Skudin V.V., Gavrilova N.N. 

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
skudin@muctr.ru 

The concepts of the organization of the catalytic process in a reactor with a 

membrane catalyst (extractor, contactor or distributor) differ only in the method of 

supplying reagents to the membrane catalyst and removing products, while the 

design of the membrane reactor remains unchanged. Separation properties of the 

membrane catalyst are required only in the case of an extractor which main function 

is to remove reaction products from the reaction volume. In other modes, the main 

function of the membrane catalyst is to control the mass transfer of the reagents in 

the pore structure (contactor) or reduce the negative effect of the reaction's thermal 

effect (distributor) [1]. The possibility of combining different ways of supplying 

reagents to the membrane catalyst with methods for exhausting reaction products 

opens up wide possibilities for controlling catalytic processes.  

Carbon dioxide conversion of methane is an example illustrating such 

possibilities. From the economic point of view, carbon dioxide conversion of methane 

is more attractive than steam conversion if its main limitations are overcome.  

There are two main shortcomings that prevent the commercial development of 

this process. First, the absence of a stable catalyst under the conditions of reaction 

(impossibility of using the existing steam conversion catalyst), and second, the 

thermodynamic limitations, which require the use of high temperatures and kinetic 

limitations, leads to low efficiency of using the catalyst surface. 

Until recently the use of a membrane reactor for the carbon dioxide conversion of 

methane was considered only on the traditional way of an extractor reactor with a 

selective membrane placed in a layer of a bulk catalyst. Although, taking into account 

the high endothermicity of this process and the kinetic limitations, it was more 

efficient to apply the distributor mode, which allows achieving a more homogeneous 

temperature distribution in the membrane catalyst and/or contactor, which, under the 

conditions of Knudsen transport in the catalyst pores, allows intensifying the catalytic 

process. 



OP-I-12 

56 

In the case of carbon dioxide conversion of methane, the basis for selecting the 

best mode should be the kinetic experiment with the membrane catalyst carried out 

for each of these regimes. 

In [2] were quantitatively established that the specific rate constant of the 

methane dissociation(the limiting stage) under the conditions of carbon dioxide 

conversion of methane in the contactor mode could increase by several orders of 

magnitude in a reactor with a membrane catalyst in relation to a traditional reactor.  

At the same time, the difference in degree of conversion in the modes of the 

contactor, distributor and extractor was much less than the difference in these 

parameters in a reactor with a traditional catalyst. An analysis of the results of the 

kinetic experiment suggests that the advantages of a membrane catalyst in carbon 

dioxide conversion of methane are due to the occurrence of Knudsen transport in a 

membrane catalyst and its design, which makes it possible to use different driving 

forces, having a positive effect on the transport of reagents and reaction products in 

the pore structure of the membrane catalyst. 
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OPTIMIZATION OF KINETIC DESCRIPTION OF GAS-PHASE AND 
CATALYTIC OXIDATION OF C1-C2 HYDROCARBONS 

Sinev M., Lomonosov V., Gordienko Yu., Ponomareva E. 

Semenov Institute of Chemical Physics, Moscow, Russia, mysinev@rambler.ru 

Detailed kinetic scheme of homogeneous oxidation of C1-C2 hydrocarbons is the 

basis for solving the problems of modeling many processes – from gas-phase 

combustion to heterogeneous-homogeneous catalytic processes. To reflect the main 

features of the chemical mechanism, such a scheme must meet several 

requirements formulated earlier [1]. Among the descriptions known to date, the one 

called ARAMCO v1.3 and developed by the Combustion Chemistry Centre of the NUI 

Galway [2], apparently, most closely meets such requirements. This model is well 

documented and validated on a broad experimental basis. However, it includes 253 

reactive species and several hundred elementary reactions and, therefore, can not 

be directly used in computational fluid dynamics (CFD) codes. Unfortunately, any 

reduction of a detailed kinetic scheme leads to a loss of its mechanistic consistency 

and decreases the accuracy of simulations. For some technical purposes the first 

factor is not critical. As to the accuracy, it can be optimized based on the 

requirements of a particular simulation task. 

In this work we tested several reduced versions of the ARAMCO v1.3 scheme in 

modeling the oxidation of methane and its mixtures with ethane and ethylene over a 

wide range of conditions. The analysis was performed using the computation 

instruments included into the Chemical Wrokbench package developed and provided 

by Kintech Lab [3]. They allowed us to 

- simulate reaction development in a wide range of reactors and conditions; 

- reduce kinetic schemes using different criteria and procedures; 

- reveal differencies in kinetic descriptions (substances, reactions, parameters). 

On the first stage of this study it was found that in the case we are interested 

mainly in the behaviour of C1-C2 species, a satisfactory accuracy is preserved if C4+ 

species are not accounted. Thus, the size of the 'basic' description was significantly 

reduced. 

Table 1 demonstrates the numbers of species and reactions in reduced schemes 

required to describe the reaction with given accuracy in different conditions. It is 
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worth noticing that the sets of reactions in the reduced schemes differ significantly, 

and the extrapolation of them to different conditions leads to a great loss of accuracy. 

By combining the descriptions for the whole range of conditions, we obtained two 

reduced schemes (Red.1 and Red.2 for 5 and 10 % MAX deviation, respectively). 
Table 1. 

Temperature, oC Pressure, atm. MAX deviation substances reactions 
650 1 0.05 42 79 
650 1 0.1 30 47 
650 10 0.05 32 60 
650 10 0.1 29 52 
850 1 0.05 35 67 
850 1 0.1 32 45 
850 10 0.05 46 85 
850 10 0.1 37 64 

650-850 (Red.1) 1-10 0.05 60 141 
650-850 (Red.2) 1-10 0.1 49 96 

 

The fact that the Red.2 scheme contains 

some steps that are absent in Red.1 proves a 

formal character of the reduction procedure. 

Fig. 1 shows that two reduced schemes can 

satisfactory describe the reaction rate. The 

same is found for the product distributions. 

Thus, the scheme can be optimized without a 

substantial loss of accuracy. In order to adopt 

such description for catalytic oxidation, one 

must combine a homogeneous scheme with a 

set of heterogeneous reactions [1]. 

The reduction procedure must be applied to 

the detailed combined scheme, and even the 

set of gas-phase steps in the final one would 

differ from those in Red.1 and/or Red.2 descriptions. 
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LOW-TEMPERATURE STEAM REFORMING OF LIGHT 
HYDROCARBONS: KINETIC STUDY ON THE WAY TO  

SELECTIVE CONVERSION 

Uskov S.I.1,2, Potemkin D.I.1,2, Snytnikov P.V.1,2, Shigarov A.B.1, 
Kurochkin A.V.3, Kirillov V.A.1, Sobyanin V.A.1 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, potema@catalysis.ru 
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Nowadays there is a problem of associated petroleum gas (APG) processing in 

Russia, Nigeria, Saudi Arabia and north states of USA. Typical APG composition is 

(vol. %) 50-70 СН4, 5-10 С2Н6, 10-30 C3+-hydrocarbons (up to octane), 0-10 N2, 0-10 

CO2. Due to the presence of C3+-fraction, APG causes engine damage and therefore 

can not be used as a fuel to generate electricity directly at oil fields. APG also has 

high hydrocarbon dew point and can not be transported by conventional gas 

pipelines. Thus, an alternative way of APG utilization is necessary. 

Low temperature steam reforming (LTSR) of APG represents a promising method 

of APG utilization. The process occurs at 250-350 °C and low steam to carbon ratio 

(H2O/CC2+ mol. < 1). Overall process can be described by two reactions: irreversible 

steam reforming of C2+-hydrocarbons with the formation of CO2 and H2 followed by 

reversible CO2 methanation: 

 CnH2n+2 + 2nH2O → (3n+1)H2 + nCO2  (n > 1) (1) 

 CO2 + 4H2 ⇄ CH4 + 2H2O (2) 

It was shown that reactivity of C2-C5 hydrocarbons increases with its molecular 

mass (Fig. 1). Converted APG with high methane content meet the requirements for 

natural gas: net calorific values are higher than 31.8 MJ/m3 and Wobbe indexes are 

between 41.2 and 54.5 MJ/m3. Reaction orders with respect to C2-C5 hydrocarbons 

are close to one. Reaction order with respect to steam is slightly negative or close to 

zero. Concentrations of CH4, CO2 and H2 do not significantly affect the hydrocarbon 

conversion. Effective activation energies for C2-C5 LTSR range from 115 to 

150 kJ/mol. Comparing the values of reaction quotient (Qr) and equilibrium constant 

(KP) at different temperatures (Fig. 2), we showed that CO2 methanation occurs in 

quasi-equilibrium mode at temperature above 250 °C so overall process rate is 

limited by the reaction of C2-C5 hydrocarbons steam reforming. Ni catalysts are not 
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MESO-SCALE MODEL OF REACTION-DIFFUSION PROCESS 
WITHIN A CATALYST PARTICLE FOR MTO PROCESS 
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Dalian National Laboratory for clean Energy, National Engineering Laboratory for 
MTO, Dalian Institute of Chemical Physics, Chinese Academy of Science,  

457 Zhongshan Road, Dalian 116023, China 
*Corresponding author: maoye@dicp.ac.cn 

The methanol to olefins (MTO) process provides an alternative approach to 

produce light olefins from nonoil resources [1]. Industrial MTO catalyst particles 

consist of meso/macro-porous support and micro-porous SAPO-34 zeolite crystals 

(active sites). In a region of a catalyst particle, the population of crystal particles and 

the support around them constitute a mesoscopic structure (see figure 1), which can 

be quantified by volume fraction, size and spatial distribution of the crystals in the 

region. The mesoscopic structure can influence the transport resistance and hence 

catalytic performance.  

Different pore sizes (micro-pore and meso/macro-pore) inside the mesoscopic 

structure indicate the existence of different diffusion mechanisms [2]. For micro-pore 

SAPO-34 crystal particles, surface diffusion of adsorbed molecular components 

along the pore wall surface is dominant. While for meso/macro-pores, the bulk (or 

molecular) diffusion and Knudsen diffusion becomes important. In addition, if the 

pressure gradient inside the pellet is not negligible, the viscous or Darcy flow should 

be incorporated.  

We developed a meso-scale model, based upon our previously proposed multi-

region model [2], to simulate the diffusion-reaction process of mesoscopic structure. 

The meso-scale model is combined with two parts: the micro-scale reaction-diffusion 

model for crystal region and the diffusion model for support region. The micro-scale 

model, based on Maxwell-Stefan diffusion theory and ideal adsorbed solution theory 

(IAST), was obtained by fitting MTO experiments of SAPO-34 crystal particles. Here 

a simplified kinetic model [3] based on MTO dual-cyclic mechanism was used. The 

diffusion model for support region was developed based upon Maxwell-Stefan 

diffusion theory, including bulk diffusion, Knudsen diffusion and viscous flow. The 

details of the meso-scale model see figure 1.  

The corresponding partial differential equation (PDE) systems, describing 

chemical reactions, bulk diffusion, Knudsen diffusion, surface diffusion and viscous 
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EFFECTIVE THERMAL CONDUCTIVITY IN OPEN CELLULAR 
STRUCTURES: ANALYSIS OF THE EFFECT OF THE GEOMETRICAL 

PROPERTIES AND PERFORMANCE COMPARISON 

Mauro Bracconi, Matteo Ambrosetti, Matteo Maestri,  
Gianpiero Groppi, Enrico Tronconi 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, via La Masa 34, Milano, Italy, enrico.tronconi@polimi.it 

Heat management and thermal control are key aspects in the design and 

operability of several catalytic processes. Technical fixed bed reactors packed with 

catalytic pellets usually suffer from a poor radial heat transfer. To overcome this 

problem, conductive structured catalysts have been proposed as a suitable solution 

for the efficient management of strongly exo- and endothermic processes. In this 

view, open-cell foams and periodic open cellular structures (POCS) are considered 

among the most promising candidates in the context of process intensification of 

energy intensive processes. They are respectively random and ordered reticulated 

interconnected solid structures, whose repeated open cells are composed by solid 

struts and open windows. The totally interconnected solid matrix promotes high heat 

transfer rates, being the conduction in the solid matrix the main contribution to the 

heat transport. The analysis of the heat 

conduction mechanism is crucial to 

enable the rational design of these 

structures. We analyzed the heat 

transfer in the solid matrix in both 

structures by means of CFD simulations 

carried out on virtually reconstructed 

structures, aiming at deriving 

engineering correlations for the 

effective thermal conductivity. We 

generated the computational domain for 

the numerical simulations based on 

accurate digital reconstructions of the geometries. Random open-cell foams are 

generated according a previously proposed methodology [1,2]. The generation of the 

computational domain for POCS is carried out starting from the CAD files generated 

by repeating in the space the basic unit cell, i.e. cubic, diamond, tetrakaidekahedral 

 
Figure 1. Effective thermal conductivity for 
open-cell foams evaluated with numerical 

simulations and experimental activities 
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(TKKD). The simulations of heat conduction in the solid matrix are carried out by 

imposing a temperature difference between two opposite faces. The heat flux across 

the solid matrix is calculated and used for the evaluation of the effective thermal 

conductivity. The procedure is assessed by comparing the estimated effective 

conductivities with literature data for open cell foams, as shown in Figure 1. A good 

agreement has been obtained for porosities higher than 0.85, while widely scattered 

experimental data are observed at lower porosity. Our results show that the main 

parameter controlling the heat conduction is the solid volumetric fraction. Moreover, 

the effect of different cellular structures, e.g. disordered foams, TKKD, cubic, 

diamond, is investigated. Figure 2 compares the heat conduction performances of 

foams and POCS. At high porosity, the open-cell foams show poorer heat transfer 

compared to ordered structures. Conversely, the performances of all the structures 

are similar at low void fractions. The performances of cubic and diamond cells are 

usually slighthly worse than the TKKD. 

The different behavior of open-cell 

foams can be ascribed to the different 

solid distribution along the strut axis 

which characterizes these structures. 

We investigated this effect by varying 

the ratio of the node to the strut size. As 

expected, an increase of the ratio 

reduces the overall performances due to 

the higher resistance to the heat flow 

through the reduced strut cross-section, 

as also reported by Bianchi et al. [3]. As a whole, our analysis provides a full 

rationalization of the effects of the geometrical properties in open-cell foams and 

periodic open cellular structures, enabling their advanced design for heat-transfer 

limited applications. 
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Figure 2. Effective thermal conductivity for 

several ordered and disordered cellular material 
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COUPLING MICROKINETIC MODELING WITH CFD-DEM FOR THE 
SIMULATION OF FLUIDIZED REACTIVE SYSTEMS 

Riccardo Uglietti, Mauro Bracconi, Matteo Maestri 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, via La Masa 34, Milano, Italy  

matteo.maestri@polimi.it 

Fluidized bed reactors are a key technology for the management of the most 
challenging catalytic processes for their high heat transfer efficiency and the 
easiness of continuous operations. Nevertheless, the fundamental understanding of 
such systems is still poor and mainly relies on phenomenological models based on 
empirical correlations, providing limited insight the system. Fluidized beds are 
characterized by a complex fluid dynamic which determines the mixing and contact 
time between reactants and catalytic pellets. Therefore, an accurate description of 
the interplay between the transport phenomena at the reactor scale and the reactions 
at the catalyst surface is pivotal to accurately predict the system behavior. In this 
view, fundamental methodologies, such as CFD and microkinetic modeling, are key 
tools for the accurate analysis of the system. In particular, the microkinetic model 
accurately predict the surface chemistry on the basis of surrounding conditions 
provided by the CFD description of the macroscale flow inside the reactor. Here, we 
coupled the CFD-DEM (Computational Fluid Dynamics - Discrete Element Method) 
methodology for the prediction of the multiphase gas-solid flow with the microkinetic 
modeling of catalytic reactions. The solid phase is described by solving the energy 
and species balances along with site species conservation equations for each 
catalytic particle (i.e. transport/chemistry step), and the Newton’s equations of motion 
(i.e. DEM step). The gas phase is described by solving the Navier-Stokes equations 
together with the energy and species mass balances. The accurate description of the 
chemistry introduces a drastic increase of the computational time (80% of the 
computational time is related to the solution of the transport/reaction term). Thus, we 
propose the application of the operator splitting [1] and of the In-Situ Adaptive 
Tabulation (ISAT) algorithms [2], successfully proposed for fixed bed reactor, to 
overcome these limitations. In particular, the operator-splitting accounts for the gas-
solid transport and for the chemical reactions in separate fractional time steps. In this 
perspective, the transport can be analytically solved, whereas the chemical sub-step 
requires the solution of a stiff Ordinary Differential Equations (ODE) system. Thus, 
ISAT algorithm is applied to the reaction substep allowing for a crucial reduction of 
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2D CONTINUUM MODELS FOR FIXED-BED REACTOR DESIGN: 
IMPACT OF 2D FLOW FIELD ON INLET REGION 

CHARACTERISTICS 

Philipp Donaubauer1,2, Leonhard Schmalhorst1,2, Olaf Hinrichsen1,2 
1Technical University of Munich, Department of Chemistry,  

Lichtenbergstraße 4, 85748 Garching near Munich, Germany 
2Technical University of Munich, Catalysis Research Center,  

Ernst-Otto-Fischer-Straße 1, 85748 Garching near Munich, Germany 
E-mail: philipp.donaubauer@ch.tum.de 

Introduction 
Modeling fixed-bed reactors by 2D continuum models is a well-established 

strategy to predict the performance of industrial reactors. Especially at low tube-to-
particle ratios tube pd d , radial porosity profiles and accompied velocity distributions 

can have a high impact on the behavior of the reactor [1]. 
Methodology 

The nature of the 2D model arises from radially dependent bed porosities  r . 

Fixed-beds consisting of ideal spheres can be characterized via the correlation of 
Bey and Eigenberger [2], while spheroidal catalyst pellets are adequately described 
with Giese’s approach [3]. These correlations are applied to the 2D extended 

Brinkmann equation in combination with the r -model of Winterberg et al. [4,5] 

describing heat and mass disperion in axial and radial direction. Figure 1 sketches 
the applied solution routine, which enables to efficiently solve the stationary two-
dimensional flow field with overall mass continuity segregated from heat and mass 
balances. Latter are discretized using orthogonal collocation on finite elements, while 
the flow field is solved via a staggered finite difference scheme. By applying a two 
dimensional flow field, instead of the popular extended 1D Brinkmann equation, 
radial flows induced by temperature and/or mole number changes are detectable [3]. 

Results 
From analysis of the 2D flow fields, it can be deduced that perfect spheres and 

spheriodal particles strongly differ in resulting flow fields inside the packed bed (z=0). 
Furthermore, Figure 2 shows that the majority of radial flow already occurs before the 
actual packed bed (z<0). Hence, to adequately describe the impact of 2D flow field in 
continuum fixed-bed reactor models void inlet regions have to be considered. Impact 
on the temperature profile is exemplarily shown in Figure 3 for strongly exothermic 
oxidative dehydrogenation of ethane (ODHE) [6]. 

mailto:philipp.donaubauer@ch.tum.de
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Figure 3. Example of temperature 

increase for ODH reaction in a spheroidal 
packed bed with void inlet (z<0) and inert 

tailing (z>1), a in 400°CT  , -15000 hGHSV   

Furthermore, we compare the pseudo-
homogeneous models with constistent 
heterogeneous model acounting for fluid and 
solid phase separately. Especially the influence 
of the inlet boundary condition (Dirichlet vs. 
Dankwerts) is succesively investigated. 
Furthermore, the widely applied neglection of 
radial velocities [6] is critically reviewed. In 
summary, our results demonstrate the impact of 
inlet region treatment in modeling of classic 
continuum fixed-bed reactor models on several 
reactor parameters.  
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CHARACTERIZATION OF HYDRODYNAMICS, HEAT AND MASS 
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The solid-state fermentation (SSF) has gained attention in recent years in the 

biotechnology industry due to its great potential in the production of biologically active 

metabolites, namely enzymes, biofuels, food additives, precursor molecules for 

chemical and pharmaceutical industries, among other high value metabolites [1,2]. 

Despite the technological advances in SSF processes, there have not been sufficient 

studies related to the characterization, design and intensification of tray bioreactors. 

However, the state of the art in the fundamentals of reactor engineering offers a 

useful avenue for the conceptual design and intensification of this class of 

bioreactors, involving a microscopic characterization of the phenomenological 

interaction among kinetics and transport phenomena that occurs within the 

bioreactor. 

The objective of this work is to characterize hydrodynamics, heat and mass 

transport under abiotic and biotic conditions in a tray bioreactor for the production of 

proteases (SSF) with Yarrowia lipolytica using agroindustrial wastes. This work 

accounts from the design of experiments to the development of models aimed at 

characterizing transport phenomena and kinetics under abiotic and biotic conditions, 

respectively. 

The bioreactor operates in two stages, the first abiotic operation (without reaction) 

for the characterization of transport phenomena (hydrodynamics, heat transfer and 

mass transfer) and the second stage (biotic) consisting of the SSF for the production 

of proteases. In the abiotic stage, first, the pressure drop is determined at different 

inlet flows. This information is transferred to the Navier-Stokes equations coupled to 

Darcy and Forchheimer to describe the velocity field in the tray bioreactor. Second, 
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EXPERIMENTAL ANALYSIS OF HYDROGEN PRODUCTION,  
LIQUID-TO-GAS MASS TRANSFER AND MIXING IN DARK 

FERMENTATION PROCESS 

B. Chezeau1,2, J.-P. Fontaine1,2, Ch. Vial1,2 
1Université Clermont Auvergne, CNRS, Sigma Clermont. Institut Pascal, F-63000 

Clermont-Ferrand, France, benoit.chezeau@hotmail.fr 
2Université Clermont Auvergne, LABEX IMobS3, F-63000 Clermont-Ferrand, France 

Dark fermentation is an eco-friendly process able to produce second-generation 
biohydrogen from waste. This follows the same metabolic pathways as anaerobic 
digestion in which methanogenesis has been supressed, so that biohydrogen 
coproducts are CO2 in the gas phase and volatile fatty acids in the digestate. This is 
considered as a well-established process, but process optimization and scale-up 
remain key issues, as the effects of abiotic parameters have been disregarded in the 
literature up to now. Thus, further data are required to better understand the interplay 
between biochemical processes, mixing conditions and liquid-to-gas mass transfer, 
as the inhibition of hydrogen production has already been reported in the literature 
due to hydrogen supersaturation in the liquid phase. The objective of this work is, 
therefore, to investigate biohydrogen production, measure  and estimate mixing 
time, not only as a function of agitation conditions, but also as a function of digestate 
viscosity which is also a key parameter of biohydrogen production processes. 

In this work, dark fermentation cultures were carried out in a baffled 
mechanically-stirred bioreactor (2.0 L volume) equipped with a dual-stage impeller 
using five levels of viscosity (from 9.0·10–4 to 6.1·10–2 Pa.s) and three levels of 
rotation speed (40, 120 and 200 rpm). Inter-impeller clearance was also varied. First, 
biohydrogen production was studied using glucose as the substrate under controlled 
pH. Then,  was measured using dynamic deaeration/aeration experiments without 
biochemical rections in the same fluids under the same agitation conditions at a 
constant gas flow rate (5.0 L/h, i.e. 0.033 vvm), corresponding to the levels reported 
in the biohydrogen production process.	 was deduced from  using the 

Higbie penetration model. Finally, mixing time  was also measured in non-reactive 
and unaerated flows using Planar Laser Induced Fluorescence (PLIF), chemical 
decolorization and a local conductimetric method. Tracer injection was operated 
using two positions, corersponding to the injection positions of the alkaline buffer 
solution for pH control in dark fermentation process. Experiments were carried out in 
triplicate.  
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Experimental results demonstrated that biohydrogen production and yield 
presented a maximum in the transitional flow regime as a function of the 
dimensionless Reynolds number ( ) which accounts simultaneously for the effects 
of rotation speed and digestate viscosity (data not shown). In particular, hydrogen 
production fell in established turbulent flow ( >1000). Even though  was also 

strongly dependent of mixing conditions, it exhibited quite different trends: while 
hydrogen yield and productivity peaked when  was about 200,  increased 

slowly below this value and rose steeply when >200 (Figure 1a). Although this 
behaviour was measured at constant gas flow rate which did not account for the 
decrease in hydrogen production under turbulent flow conditions, it emerges however 
clearly that a compromise between mass transfer enhancement and biogas 
production must be found in dark fermentation. It also arises from experimental data 
that neither hydrogen supersaturation nor the access to nutrients were the limiting 
steps when >200, as it can be inferred from mixing time data in Figure 1b. Thus, it 
is probable that turbulent stress applied on microorganisms is responsible for the 
impairment of biohydrogen production at high . Conversely, it seems necessary to 
approach transitional conditions in Figure 1b, as  increased steeply when  
decreased below 200. These results were also influenced by inter-impeller clearance 
and the injection point (data not shown), highlighting the effect of impeller design. 

Concludingly, this work underlines the key role of agitation conditions and 
digestate viscosity, described univocally as a function of , on biohydrogen 
production, liquid-to-gas mass transfer and mixing, for the scale-up of the dark 
fermentation process. 

(a) (b)

Figure 1. (a) Evolution of  as a function of the Re; (b) Evolution of the mixing time  from 
PLIF, chemical decolorization and conductimetric experiments as a function of the Re (inter-impeller 

clearance = 115 mm, injection position = 160 mm, error bars are based on triplicate experiments) 
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CHARACTERIZATION OF THE LOCAL HYDROMECHANICAL 
STRESS THROUGH EXPERIMENTAL AND NUMERICAL  

ANALYSIS OF HYDRODYNAMICS UNDER DARK FERMENTATION 
OPERATING CONDITIONS 

Danican A.1, Chezeau B.1,2, Fontaine J.-P.1,2, Vial Ch.1,2 
1Université Clermont Auvergne, CNRS, Sigma Clermont. Institut Pascal,  

F-63000 Clermont-Ferrand, France, benoit.chezeau@hotmail.fr 
2Université Clermont Auvergne, LABEX IMobS3, F-63000 Clermont-Ferrand, France 

Dark fermentation is an anaerobic process in which organic waste can be broken 

down by microorganisms, resulting in the production of biohydrogen, CO2 and the co-

production of metabolites such as volatile fatty acids. In this process, mechanically-

stirred bioreactors can generate laminar, transitional or turbulent flows, depending on 

agitation speed  and the viscosity  of the digestate, as power input must be 

maintained below 10 W/m3 to achieve economic sustainability. As pointed out in a 

previous work, biohydrogen production and yield could be described by a unique 

parameter, the dimensionless Reynolds number : H2 production and yield peaked 

when  was about 200, i.e. under transitional flow conditions. As many anaerobic 

bacteria are reputed to be sensitive to hydromechanical stress arising from turbulent 

conditions, a comparison between the average size of microorganism aggregates 

measured by laser diffraction ( ) and the volume-average Kolmogorov length scale 

derived from power input was used to support this assumption. However, this 

approach neglects the spatial variability of power dissipation in stirred tanks. So, 

Computational Fluid Dynamics (CFD) could be an efficient tool for circumvent this 

issues, but the current turbulence closure models, i.e. the  models, exhibit a 

poor predictive ability close to transitional flow conditions. An experimental validation 

of the simulations is therefore compulsory. Thus, the objective is to analyze the local 

flow in the agitation and mixing conditions of acidogenic fermentation experimentally 

using PIV (Particle Image Velocimetry) and numerically using CFD, so that the 

assumption that turbulent eddies increase the need for cell maintenance and impair 

H2 production when their size is lower than  can be assessed. 

Experiments using PIV were carried out in a fully-baffled 2-L tank equipped with a 

dual-stage impeller under five levels of viscosity (from 9.0·10–4 to 6.1·10–2 Pa.s) and 

three levels of rotation speed (40, 120 and 200 rpm). The distribution of the turbulent 

kinetic energy , the turbulent kinetic energy dissipation rate  and the Kolmogorov 
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The work is divided into 

evaluation of the few prototypes of 

flow calorimeters and analysis of the 

advantages or disadvantages of 

some of them. One of the prototypes 

of the flow calorimeter, comprising of 

the glass reactor tube and infrared 

camera was assembled. This reactor 

has shown the possibility to achieve 

a steady state thermal profile in the conditions close to adiabatic. Some advantages 

of the method were illustrated with catalytic decomposition of hydrogen peroxide on 

manganese oxide. Two main features were displayed: 

First feature – the multiple steady state kinetic profiles can be achieved at 

different flow rates. Comparison of such profiles allow to visualise change in catalyst 

mass transfer properties as a function of flow velocity (Fig. 2); 

Second feature – the evolution of the catalyst activity over time can be observed 

by monitoring the thermal profile as catalyst deactivates.  

With the flow calorimeter, it was shown that the mass transfer effects in the 

packed bed can be observed independently of kinetics of chemical reaction and 

catalyst deactivation. This provides a powerful tool for better understanding the 

implications of novel complex multiphasic heterogeneous catalytic processes as well 

as a fresh view on the already well-studied conventional processes. 
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Fig. 2. Kinetic profiles of the hydrogen peroxide 
decomposition over heterogeneous catalyst at 

different flow rates 
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CAPTURING THE EFFECT OF PARTICLE CLUSTERS IN A 
DOWNFLOW REACTIVE SYSTEM VIA LARGE EDDY SIMULATIONS 

Noel Gomez1,2, Laurien A. Vandewalle2, Pieter A. Reyniers2,  
Alejandro Molina1, Kevin M. Van Geem2, Guy B. Marin2 

1Universidad Nacional de Colombia – Sede Medellín. Facultad de Minas,  
Calle 80 No 65-223, Medellín, Colombia 

2Laboratory for Chemical Technology. Technologiepark 914, 9052 Ghent, Belgium 

Several 4-way coupled reactive 3D DEM-LES were carried out using OpenFOAM 

to investigate the effect of particle clusters on the chemical behavior of a downer 

reactor during the fluid catalytic cracking of gasoil. Particle clusters in pneumatic 

conveying processes, such as FCC, prevent ideal contact between phases in the 

reactor and hence induce heat and mass transfer limitations; and reduce the 

efficiency (low-conversion zones) in both risers and downers.  

A one-meter-long cylindrical downer was used as a canonical case to analyze the 

dynamics of particles via 3D DEM-LES. A fluid mesh of 7.0 106 hexahedral cells 

sufficed to meet the 1 criterion for wall-resolved simulations. The simulation 

included 4.8 106 particles as inventory under normal operating conditions, which 

corresponds to a mean particle volume fraction of 0.01 over the simulated volume, a 

value characteristic of fast fluidization processes. A four-lump mechanism was 

selected to describe the chemical behavior of the process. This mechanism 

considers gasoil, gasoline, light gases and coke as lumped species of the process. 

Validation of the reactive 3D DEM-LES was carried out using experimental data 

found in literature [1]. The product distribution predicted by the 3D DEM-LES agrees 

with experimental data at the outlet with maximum differences on the yields of 

10 rel.%.These can be attributed to the simplicity of the kinetic mechanism. 

The identification of clusters in the downer reactor was carried out using the 

instantaneous position of the particles in the domain and the inter-particle distance. 

Information on the position of the particles in a cluster was used to determine the 

shape, size and distribution of the clusters. The detected clusters tend to be shaped 

like strands or sticks; particles naturally align in elongated structures to minimize the 

drag force and hence the shear stresses. The shear forces are reduced at the bottom 

of the reactor where the reaction rates and, hence, the acceleration accompanying 

the expansion is low. Besides, because of the change in the gas properties, particles 

respond slower to external disturbances from the gas phase and, therefore, larger 
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TOMOGRAPHY BASED SIMULATION OF REACTIVE  
FLOW AT THE MICRO-SCALE: PARTICULATE FILTERS  

WITH WALL INTEGRATED CATALYST 

Greiner R.1,2, Prill T.3, Iliev O.3, van Setten B.2, Votsmeier M.1,2 
1TU Darmstadt, Darmstadt, Germany, r.greiner@tc1.tu-darmstadt.de 

2Umicore AG & Co. KG, Hanau, Germany 
3Fraunhofer ITWM, Kaiserslautern, Germany 

Introduction 
Due to the need for high contact area, most catalytic systems exhibit a micro-

scale structure. The standard simulation approach is to not resolve this micro-scale 

structure which is then described in terms of volume averaged homogeneous model 

equations [1]. Today, micro-scale geometries can be routinely obtained by X-ray 

tomography. In this contribution, the application of tomography-based micro-scale 

reactive flow simulation is demonstrated for the reactive flow in the pores of a 

particulate filter wall with integrated catalyst (washcoat). It is shown that micro-scale 

transport effects have a significant effect on the overall catalyst performance. 

Simulation of the filter wall 
A wall segment of a catalyzed particulate filter was analyzed by X-Ray 

tomography with a spatial resolution of ~1.4 m and each volume element was 

assigned as either pore, substrate or washcoat, where only in the latter the reaction 

is taking place. The flow field and the concentration profiles were then computed 

using the PoreChem simulation code [2], assuming a first order reaction in the 

washcoat. The left side of Figure 1 shows the resulting flow field through a filter wall 

segment. The conversion in the filter wall was compared to a homogeneous model 

with the same dimensions and catalyst content, see right side of Figure 1. 

Results and Discussion 
It was found that the conversion in the pore network is lower than predicted by 

the homogeneous model, indicating the presence of some kind of in-pore transport 

limitation. Potential explanations are flow channelization through bigger pores leading 

to a broadening of the residence time distribution or diffusion limitations within the 

washcoat. It was found that in our case the reduced conversion can almost entirely 

be attributed to diffusion limitations in the wall integrated washcoat. If the diffusion in 

the washcoat was described by a standard effectiveness factor model with the 

effective washcoat diameter fitted to the results of the full pore scale simulation, a 
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CFD MODELING OF MICROCHANNEL ENABLED ETHYLENE OXIDE 
SYNTHESIS WITH INTEGRATED COOLING 

Selin Bac, Ahmet K. Avci 

Department of Chemical Engineering, Bogazici University,  
Bebek 34342, Istanbul, Turkey, avciahme@boun.edu.tr 

Ethylene oxide (C2H4O) is an important intermediate for ethylene glycol, 

antifreezers, and polyesters. It is commercially produced by partial oxidation of 

ethylene (C2H4 + 1/2O2 = C2H4O) on pure or -Al2O3 supported silver catalysts. 

Under operating conditions total oxidation of ethylene (C2H4 + 3O2 = 2CO2 + 2H2O) 

occurs. These two competitive reactions are highly exothermic, making precise 

temperature control essential for high selectivity towards C2H4O. In this respect, use 

of wall-coated microchannel reactors characterized by heat transfer rates ~102 higher 

than those of conventional packed-beds become promising. Furthermore, ease of 

integration of cooling function allows microchannel units to operate under isothermal 

conditions favoring optimization of selectivity and conversion. This study aims to 

explore the potential benefits of heat exchange (HEX) integrated microchannel 

reactor operation on ethylene oxide synthesis by means of a detailed parametric 

study carried out by CFD-based modeling and simulation techniques.  

Microchannel reactor is composed of solid wall separated parallel cooling and 

reactant channels involving counter-current flow of coolant (air) and reaction mixture, 

both at an inlet linear velocity of 2×10–2 m/s at atmospheric pressure. Dimensions for 

the cooling and reactant channels are the same, 4×10–4 m for height, 6×10–4 m for 

width, and 5×10–2 m for length. Reactant channel contains 5×10–5 m thick Ag/-Al2O3 

catalyst layers which are wash-coated onto opposing inner channel walls. 

Microchannel reactor operation is modeled in 2D on ANSYS 16.0 platform that 

utilizes finite volume method through which simultaneous solution of steady-state 

transport of momentum, heat and mass in porous catalyst and fluid phases together 

with catalytic reactions are obtained. Parametric study is made on reactant and 

coolant inlet temperatures, molar feed ratio (C2H4/O2), and wall thickness and 

material which are selected in the ranges of 230-280 °C, 215-275 °C, 1.5-3,  

4-8×10–4 m, respectively. Materials are selected as stainless steel, aluminum and 

cordierite. Details of the microchannel reactor and modeling approach can be found 

elsewhere [1].  
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OPEN-CELL FOAMS AND PERIODIC OPEN-CELLULAR 
STRUCTURES AS ENHANCED SUBSTRATES FOR THE 

INTENSIFICATION OF ENVIRONMENTAL CATALYTIC PROCESSES 

Matteo Ambrosetti, Mauro Bracconi, Riccardo Balzarotti, Matteo Maestri, 
Gianpiero Groppi and Enrico Tronconi 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, Via La Masa 34, Milano, Italy, enrico.tronconi@polimi.it 

Stochastic open-cell foams and Periodic Open-cellular Structures (POCS) 
represent a promising alternative to conventional honeycomb monoliths as catalyst 
supports for enviromental applications, e.g. automotive exhausts aftertreatment. The 
former are cellular materials composed by irregular interconnected cells sorrounded 
by solid struts and permeable windows. The latter are regular arrays of repeated unit 
cells with well-defined topology [1]. Both geometries provide high surface areas, high 
void fractions and high external transfer rates [2], besides they allow radial mixing 
which combined with custom shape design may offer significant advantages. Despite 
the high interest towards these structures, adequate engineering correlations for the 
description of gas-to-solid mass transfer and pressure drops are still missing. In this 
work, we present the results of a combined numerical and experimental investigation 
of the transport properties in these structures. Experimental analysis were performed 
running CO oxidation under diffusional limitations [2]. Numerical investigations are 
carried out on virtual reconstructions of the structures. Open-cell foams are 
generated according to an accurate reconstruction procedure [3] and the geometrical 
properties estimated according to a detailed model [4]. POCS are meshed from a 
CAD file. Infinitely fast surface reaction is imposed to mimic external transport 
limitations. A generalized correlation able to accurately describe the performances of 
samples with different geometrical properties and flow conditions is derived for foams 
and POCS. In contrast with honeycombs, the flow mechanism inside these structures 
is close to crossflow in tube bundles with the mass transfer coefficients increasing 
with the Reynolds number (Fig. 1a). This results, as an example, in a volumentric 

mass transfer coefficient at 5 m/s of ~4800 1/s for a commercial foam (dc = 600 m – 

 = 0.9), strongly overcoming the conventional honeycomb (900/2.5) performance 
which is around 1100 1/s. Additionaly, two distinct flow regimes are found: one 
related to the fully laminar conditions and another one representative of the cross-
mixing at high Reynold numbers. Pressure drops of foams and POCS are evaluated 
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with a combined experimental and CFD approach over virtually reconstructed 
samples and 3D printed replicas. Ergun-type pressure drop correlations are able to 
describe the effect of the geometrical properties on the pressure losses, see  
Figure 1b. 

 
Figure 1a. Mass transfer correlations for foams 

and POCS and experimental data 

 
Figure 2b. Parity comparing the predictions of 

the pressure drops correlations against 
experimental data 

A central aspect in environmental processes is the tradeoff between diffusional 

mass transfer and pressure drops, which can 

be described according to a dimensionless 

merit index introduced by Giani et al. [1]. With 

the derived correlations, we compare the 

performances of square channel honeycombs 

(HC in Fig. 2) with those calculated for these 

innovative structures. The comparison shows 

that in a narrow range of geometrical 

properties and operating conditions these 

structures are able to outperform current technologies. Moreover, the high degrees of 

freedom offerd by POCS structures is promising in view of further improving the 

performances and extending the range of the advantageous operative regimes. 

References 
[1] L. Giani et al., Ind. Eng. Chem. Res. 2005 44 4993-5002. 
[2] M. Klumpp et al., Chem. Eng. J. 2014. 242 364-378. 
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INVESTIGATION OF PACKED FOAMS AS A NOVEL REACTOR 
CONFIGURATION FOR METHANE STEAM REFORMING  

Riccardo Balzarotti, Matteo Ambrosetti, Alessanda Beretta,  
Gianpiero Groppi and Enrico Tronconi 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico 
di Milano, Via La Masa 34, Milano, Italy, enrico.tronconi@polimi.it 

Structured catalysts represent a highly promising solution for the intensification of 
non-adiabatic chemical processes, where radial heat transfer represents the major 
issue which governs the reactor performance and limits considerably the reactor and 
process scalability [1]. The catalytic activation of metallic structures (i.e. honeycomb 
monoliths, open cell foams) by washcoat deposition has been widely studied as a 
promising solution to improve the performance of fixed bed reactors with respect to 
packed beds; indeed, heat transfer can be improved by the use of highly conductive, 
interconnected and catalytically active structured substrates [2]. Nevertheless, 
drawbacks such as smaller catalyst inventory with respect to packed beds and issues 
like washcoat adhesion and catalyst loading/unloading discourage the application of 
this technology at the industrial scale [3].  

In this work, a novel fixed bed reactor configuration is proposed and tested for the 
steam reforming of CH4; it consists of filling the voids of a highly conductive open-cell 
foam with small catalytic pellets. This reactor layout aims at enhancing the radial heat 
transfer of the tubular reactor by exploiting the thermal conductivity of the solid 
interconnected matrix, without losing catalyst inventory.  

Tests were performed using a Rh/Al2O3 catalyst in form of alumina egg-shell 
particles, with diameter of 1.8 mm. In the case of the packed foam layout, FeCrAlY 
open cell foams (Porvair) of 12 PPI with 5 mm cell size and 0.92 void fraction were 
used; diameter and height of the foam were 29 mm and 25 mm, respectively. Drills 
were made for the thermocouple-wells. Temperature profiles were in fact recorded 
longitudinally across the catalytic bed in three different radial positions, namely at the 
centerline, at 8 mm from the center and at the wall. The foam void volumes were 
filled with catalytic particles (Fig. 1-a). For comparison, tests in a conventional 
packed bed system were also performed. In this case, the same load of catalytic 
particles was loaded in the reactor, mixed with SiC particles (SiC to catalyst weight 
ratio of 1.54) in order to have the same reactor volume as for the packed foam 
layout. In both configurations, tests were carried out in a tubular reactor (I.D. = 

mailto:enrico.tronconi@polimi.it
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29.5 mm) externally heated by a furnace; tests were performed in the 600-800 °C 
range. The feed consisted of a steam/CH4 mixture with S/C ratio of 3.5. Water was 
condensed and separated downstream from the reactor. A small N2 flow was mixed 
to the dry product stream, as an internal standard. The quantification of reaction 
products was performed using an on line micro-GC (model GCX by Pollution) 
equipped with MolSieve and Porapack columns connected to TCD detectors. 

 

 
Figure 1a. Close-up view of packed 

foam into the reactor 
Figure 2b. Temperature profiles at catalytic bed outlet for 

packed foam (dashed line, open symbol) and packed bed (full 
line, full symbol) at 5000–1 (square) and 10000 h–1 (triangle) 

At the GHSV of 5000 and 10000 h–1 the tests showed an improvement of CH4 
conversion in the packed foam over the packed bed, at fixed furnace temperature 
(i.e. from 92 % to 95 % at GHSV = 10000 h–1 and furnace temperature of 800 °C). 
Although small, this improvement is significant, given the irreducible role of 
thermodynamics at these high temperatures. This behavior can be ascribed to the 
reduced heat transfer resistances from the reactor wall to the catalyst, which enabled 
smaller temperature gradients and flatter T-profiles along the radial direction thanks 
to the conductive heat transfer mechanism favored by the open cell foam structure 
(Fig. 1-b). Such enhanced heat transfer performances were even more evident at 
higher space velocities. Conversely, at all space velocities, the packed bed with SiC 
partcles showed more pronounced radial gradients, thus uneven rate distributions 
within the catalyst mass. 
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PORE-SCALE MODELING OF COATED CATALYTIC FILTERS 

Plachá M.1, Šourek M.1, Kočí P.1, Isoz M.1, Václavík M.1, Svoboda M.2,  
Price E.3, Novák V.3, Thompsett D.3 

1University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, 
Czech Republic, Tel.: +420220443293, e-mail: petr.koci@vscht.cz 
2New Technologies Research Centre, University of West Bohemia,  

Univerzitní 8, Pilsen 306 14, Czech Republic 
3Johnson Matthey Technology Centre, Blounts Court Road,  

Sonning Common, Reading RG4 9NH, United Kingdom 

Increasingly stringent European legislation for particulate matter emissions in 

automotive applications requires the use of particulate filters not only for Diesel cars 

but newly also for cars with gasoline engines [1,2]. Current trend is the integration of 

catalytic coating for abatement of gaseous pollutants into the filter, making the 

system more compact. Distribution of the catalytic coating in the porous filter 

substrate affects the catalytic activity, soot trapping efficiency and pressure drop. 

This work presents a novel methodology for pore-scale modeling of flow, diffusion 

and reaction [3] combined with soot particles filtration. The models work with  

3D–reconstruction of porous filter wall obtained from X-ray tomography (XRT) scans, 

describing pore morphology as well as spatial distribution of solid phases (substrate 

and coating). The XRT images are transformed into simulation mesh suitable for 

computations in OpenFOAM simulation environment. Processes in the filter wall are 

decoupled and solved by in-house developed models: (i) flow through filter pores, 

(ii) gas component convection, diffusion and reaction in the coated zones, and 

(iii) soot particle transport and filtration, including Brownian motion (Figure 1).  

Three coated gasoline particulate filters (GPF) are examined in this work. The 

samples are based on cordierite substrate and vary in the distribution of Pd–Al2O3 

coating: (i) in wall, (ii) combined in+on wall, and (iii) on wall. For each sample, eight 

sections are reconstructed and simulations are repeated in order to obtain 

statistically representative results. The average pressure drop, permeability and gas 

component conversion are calculated from steady-state pressure, velocity and 

concentration fields in the reconstructed domain. The statistics of particle trapping 

then allows evaluation of filtration efficiency depending on soot particle size. The 

predicted performance is then confronted with the measured data. 

The results suggest that the gas predominantly flows through remaining free 

pores in the filter wall and cracks in the coated layer. Large domains of compact 
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OP-II-4 

92 

catalytic coating covering complete channel wall result in a significant increase of 

pressure drop as the local permeability of the coating is two orders of magnitude 

smaller than that of bare filter wall. The filtration efficiency and pressure drop are 

more sensitive to coating distribution than the conversion of gas components. The 

most promising structure combines in-wall and partial on-wall coating. The developed 

models open the doors to computer-aided optimization of coating distribution in 

particulate filters. 

 

Figure 1. Filter sample with combined in-wall and on-wall coating.  
a) Reconstructed wall structure (grey = substrate, yellow = catalytic coating) with streamlines,  

b) CO concentration profile, c) soot particles (black = moving, red = trapped) 
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MATHEMATICAL MODELING OF HIGHLY EXOTHERMAL 
PROCESSES IN MICRO-CHANNEL REACTORS 

Vernikovskaya N.V.1,2, Ovchinnikova E.V.1, Chumachenko V.A.1,  
Gribovskii A.G.1, Makarshin L.L.1 

1Boreskov Institute of Catalysis SB RAS, Pr. Ak. Lavrentieva 5,  
Novosibirsk 630090, Russia, vernik@catalysis.ru 

2Novosibirsk State Technical University, Novosibirsk 630090, Russia 

In the last years, the studies of catalytic processes in micro-channel reactors 
(MCR) have received great attention. Due to the small sizes of reaction zone, such 
reactors have advantages over conventional ones, in particular, higher efficiency of 
heat and mass transfer, which play an important role if the process is accompanied 
by substantial heat release or heat consumption.  

The paper is devoted to the theoretical study of highly exothermal process of 
methanol to formaldehyde oxidation in MCR. The MCR constitute a brass disc 10 
mm thick and 52 mm in diameter with 250 channels filled by the crushed industrial 
iron-molybdenum catalyst. The diameter of channels is 1 mm. The reactor is heated 
up to the reaction temperature in the flow of inert gas. Then reacting mixture is fed to 
the reactor. The oxygen to methanol ratio is 1.5. The influence of methanol 
concentration (Cm), velocity at the inlet of reactor (u) and temperature (T) on 
methanol conversion (x) and formaldehyde selectivity is studied.  

Mathematical modeling is done on the base of two models: 
1) The heating of the reactor in the flow of inert gas is modeled using 3D 

unsteady-state reactor model which takes into account the convective heat and mass 
transfer, effective thermal conductivity and diffusion in the cannels with catalyst, 
thermal conductivity of solid material of the disc without catalyst in channels and heat 
exchange with furnace. Heat exchange between these two computational domains, 
solid material of the disk and channels with catalyst, is also considered.  

We can see (Fig. 1) that difference in the temperature values at various locations 
within the reactor is not more than 3 degrees, so we suppose that all channels are in 
the similar conditions and we consider then only the processes in the separate 
channel.  

2) The influence of the parameters on the process performance is studied using 
2D cylindrically symmetric steady-state channel model which takes into account the 
convective heat and mass transfer, effective thermal conductivity and diffusion in the 
channel, heat exchange between channel and its wall, catalytic reactions. 
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MULTI-SCALE MODELING OF AN ANNULAR STRUCTURED 
CATALYTIC REACTOR: APPLICATION TO STEAM  

METHANE REFORMING 

Florent Minette1, Juray De Wilde2 

Materials & Process Engineering (IMAP), Institute of Mechanics and Materials 
(iMMC), Université Catholique de Louvain, Louvain-la-Neuve, Belgium 

1 florent.minette@uclouvain.be, 2 juray.dewilde@uclouvain.be 

Structured catalytic reactors have shown potential to intensify catalytic processes. 

An optimized flow pattern allows increased heat transfer and reduced pressure drop 

compared to conventional packed bed reactors [1-2]. A thin layer of catalyst is coated 

on the internals of the reactor, allowing high catalyst effectiveness factors. Reactor 

design, optimization and scale-up requires the development of a detailed reactor 

model accounting for intrinsic reaction kinetics and transport phenomena. A multi-

scale approach is presented for the case of an annular structured reactor for 

methane steam reforming (ZoneFlowTM Reactor Technologies).  

The intrinsic kinetics of steam methane reforming and water-gas shift reactions 

on a new Ni-based, intrinsically bound thin-layered catalyst adhered on a metal 

substrate were experimentally studied [3]. The experiments were performed in a 

tubular packed bed micro-reactor, designed to avoid transport phenomena limitations 

[4]. Estimation of the parameters and discrimination between the competing models 

followed from non-linear regression and statistical and physicochemical testing [5-7]. 

Intra-catalyst diffusion limitations were accounted for using a pseudo-continuum 

model [8].  

The commercial reactor performance is also determined by the complex flow 

pattern. A Computational Fluid Dynamics (CFD) model was developed. The 

Reynolds-Averaged Navier-Stokes (RANS) approach was adopted and turbulence 

was accounted for through the k-ε model. Thermal conduction in the walls and the 

internals of the reactor was accounted for and radiation was described by means of 

the Rosseland-Weighted Sum of Gray Gases Model. The CFD code was coupled 

with the intrinsic kinetic model and effectiveness factors independently calculated 

were imposed. The model parameters were determined from a combination of cold 

flow pressure drop tests and hot inert and reactive flow tests in different pilot plant 

units. The complete model was finally used to perform simulations of a commercial 
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DESIGN AND EVALUATION OF PHOTOCATALYTIC 
MICROSTRUCTURED REACTOR MODULES 

Thomas Claes, M. Enis Leblebici, Tom Van Gerven 

KU Leuven, Chemical Engineering Department, Leuven, Belgium, 
tom.vangerven@kuleuven.be 

Photocatalysis is a promising technology for a wide area of applications like water 

purification, pharmaceutical ingredients synthesis and energy storage. Although the 

great opportunities that photocatalysis is offering, almost no industrial photocatalytic 

processes exist. This lack of practical application is mainly due to the suboptimal 

reactor design. This work focuses on the development of microstructured 

photocatalytic reactors which can easily be scaled-up to industrial throughputs. There 

are three aspects related to photocatalytic reactor engineering we have to address: 

photon transfer, catalyst load and mass transfer. A high catalyst load can be 

achieved by using thick catalyst layers. However, this will cause internal mass 

transfer as well as photon transfer problems. Thus, a thin catalyst layer is preferred 

but this means only low catalyst loadings can be applied and the unabsorbed photon 

energy will be lost. Keeping these limitations in mind, microreactors are interesting 

devices because they solve the three limitations simultaneously due to very high 

surface to volume area. Despite the fact that microreactor kinetics are fast, they are 

not very productive1. A strategy to achieve microreactor kinetics while maintaining 

productivity is to create large photocatalytic structures consisting of microchannels. 

In this work a reactor structure was build out of spheres with a maximum 

diameter of 3 mm. This size ensures microchannels of maximum 750 m inside the 

structure. Spheres can be packed easily while maintaining good light distributing 

properties. Using this structure a surface to liquid volume area of up to 15000 m2m–3 

could be reached and catalyst loads of 15 g·L–1 while keeping the catalyst layer 

thickness below 500 nm. Methylene blue degradation was selected as a model 

reaction for testing the reactor performance and the concentration was monitored 

using an online UV-VIS spectrophotometer. As a light source, a custom-designed 

LED array was used with a mean cone angle of 30° to minimize light losses and 

ensure a homogeneous light field of 200 W/m2. 

To benchmark the reactor, the apparent first-order rate constant, a measure for 

reaction speed, and the photocatalytic space-time yield, a measure for productivity in 
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function of energy consumption, were evaluated for our system. It was found that the 

apparent first-order constant can be increased from order 10–2 to order 10–1 1/min 

while the photocatalytic space-time yield can be increased with 10 to 50 orders of 

magnitude due to the efficient light consumption of the reactor together with efficient 

light source design. 

In summary, a new, scalable microstructured photocatalytic reactor was proven 

effective to increase the efficiency and throughput of continuous photoreactors. The 

formed microstructure and the thin catalyst layer were shown to lead to a faster and 

more productive reactor which can be used in the future on an industrial scale. 

References 
[1] Leblebici, M.E., Stefanidis, G.D. & Van Gerven, T. Comparison of photocatalytic space-time yields 

of 12 reactor designs for wastewater treatment. Chem. Eng. Process. Process Intensif. 97, 
(2015) 106-111. 
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THE SORBENT AND THE PROCESS: CO2 AND H2O SORPTION 
ENHANCEMENT IN CHEMICAL REACTORS 

Jurriaan Boon1,2 
1Sustainable Process Technology, ECN, Petten, The Netherlands, boon@ecn.nl 

2Chemical Process Intensification, TU/e, Eindhoven, The Netherlands 

Chemical industry has tremendously improved the processing of materials, 
resulting in jobs, new materials, and products. To maintain its role in a sustainable 
society, industry now needs to respond to two challenges, namely (1) the efficient 
and effective capture and storage of CO2 [1], and (2) the efficient and effective re-use 
of CO2 as circular carbon [2]. While processes for carbon capture and utilisation 
(CCU) exist, intensified multifunctional processes can overcome equilibrium 
limitations and enhancing both efficiency and effectiveness of CCU. Here, 
developments of sorption-enhanced gas-solid chemical reactors are presented, 
focussing on chemistry and kinetics on the micro scale and the way these manifest 
themselves on reactor scale. 

Sorption-enhanced water-gas shift (SEWGS) is exceptionally suited for CO2 
capture from industrial gases, producing hot decarbonised H2 by in situ CO2 
adsorption [3]: 

 CO + H2O  CO2 + H2   CO2 + •  •CO2 
Hydrotalcite-based adsorbents were developed for pressure swing adsorption, 

showing high stability with sufficiently high cyclic working capacity. Experimentally, it 
has been shown that different relevant adsorption sites exist [4–6]. Reactor models 
based on a understanding of the functioning of these sites have allowed for design 
and optimisation of SEWGS [7]. Comparative analysis has shown that SEWGS 
outperforms conventional technologies, based on its inherently high CO2 capture 
ratio. Currently, a SEWGS pilot installation is being operated on blast furnace gas [8]. 

Utilisation of CO2 can be facilitated by in situ steam adsorption on LTA zeolite 
adsorbents in several relevant processes. Sorption-enhanced reverse WGS reaction 
(‘COMAX’) aims to convert CO2 into the more versatile feed gas CO [9]: 

 CO2 + H2  CO + H2O   H2O + •  •H2O 
COMAX cycle design will be presented, addressing the selectivity and the 

prevention of consecutive reactions at higher pressures. Sorption-enhanced 
methanation (SEM) increases the yield and reduces the concentration of 
unconverted H2 [10]: 
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 CO2 + 4H2  CH4 + 2H2O   H2O + •  •H2O 
Conventional methanation and SEM in series allows for near-complete 

conversion of H2 in a power-to-gas process and achieving the specified dew point for 
delivery to the natural gas grid. Sorption-enhanced dimethyl ether (DME) synthesis 
(SEDMES): 

 2CO2 + 6H2  CH3OCH3 + 3H2O  H2O + •  •H2O 
has more recently been demonstrated experimentally [11], showing increased yield 
of DME, an improved selectivity, and strongly reduced CO2 content in the product. It 
was found that regeneration of the system [12] and the scale of mixing of different 
catalyst functions are crucial for functioning of both catalyst and adsorbent. 

In conclusion, sorption enhancement in chemical reactors offers clear advantages 
in overcoming equilibrium limitations, improving selectivity, and improving the 
efficiency of separation. It will become reality, provided that a fundamental 
understanding of micro scale phenomena is properly translated into process design. 
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HYDROGEN PRODUCTION BY SORPTION-ENHANCED STEAM 
REFORMING OF HYDROCARBONS WITH AUTOTHERMAL 

SORBENT REGENERATION IN A SUPER-ADIABATIC HEAT FRONT 
OF CATALYTIC COMBUSTION REACTION 

Sergey Zazhigalov, Andrey Zagoruiko 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, zagor@catalysis.ru 

Active development of hydrogen-based energy technologies is in a great extent 

limited today by availability of efficient and low-cost hydrogen production. The most 

promising technological way in this direction is application of sorption-enhanced 

catalytic methane steam reforming. This approach, first formulated even in 19-th 

century [1], has received a lot of attention in modern practice since 1980-s and now 

is developing extremely fast by numerous research groups worldwide [2]-[6]. 

The sorption-enhanced catalytic methane steam reforming concept except usual 

methane and carbon monoxide steam conversion catalytic reactions, widely applied 

in conventional technologies 

 СН4 + Н2О  СО + 3 Н2 (1) 

 СО + Н2О  СО2 + Н2 (2) 

also includes the adsorption of product СО2 by solid sorbent: 

 MeO + СО2  MeCO3 (3) 

leading to favorable equilibrium conditions for reactions (1), (2) and to achievement 

of high yield of high-purity hydrogen in one conversion stage. After saturation of 

sorption capacity of the sorbent it is necessary to provide its regeneration according 

to backward reaction 

 MeCO3  MeO + СО2 (4) 

Though the research efforts in this area are very intensive and active, the 

achieved level of process efficiency is still far from ideal. While performance of basic 

reaction cycle (reactions 1-3) is well studied, the source of most complications is 

sorbent regeneration reaction stage (4). The method here is “isothermal” sorbent 

regeneration, meaning external bed heating during regeneration stage, characterized 

with high level of inefficient energy losses. Moreover, efficient and uniform heating of 

the bed in this case is possible only in reactors with relatively small diameter and this 

factor limits the scale of approach application or requires unreasonable complication 

of reformer design.  
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Much more promising, but much less studied, regeneration method is adiabatic or 

autothermal regeneration, meaning heating of the catalyst-sorbent bed by exothermic 

reaction performed directly inside the bed [7],[8]. In this case CO2-sorbent 

regeneration is performed according to reaction (4) with supply of heat, necessary for 

regeneration, by oxidation of available combustible substances (say, hydrogen or 

methane) in the air flow directly in the adiabatic sorbent-catalyst bed: 

 H2 + ½ O2  H2O (5) 

 CH4 + 2O2  CO2 + 2H2O (6) 

As shown by mathematical modelling, both process stages may be performed in 

a periodical “traveling heat wave” regime and in this case, it becomes possible to 

create at each process stage the axial profiles of catalyst temperature, optimal for 

performance of next stage. Especially efficient operation mode may be realized by 

application of counter-current (or reverse flow) operation, when methane/steam and 

air/fuel mixtures are fed into processor bed in opposite directions.  

The evident advantage of the proposed regeneration mode is that combustion 

heat produced is distributed uniformly around the bed sequence and, therefore, the 

regeneration efficiency does not depend upon the bed diameter. This circumstance 

opens the way for creation of cheap and reliable adiabatic packed bed methane 

processors of unlimited processing capacity instead of either conventional single-

tube reactors with external heating with very limited productivity or expensive and 

complicated multi-tubular reactors for high capacities. 

References 
[1] Tessie du Motay, M., Marechal, M.: Bull. Chim. France 9, 334 (1868). 
[2] A.R. Brun-Tsehovoy. Doctor of Sciences Thesis. Moscow, 1990. 
[3] J.R. Hufton, S. Mayorga, S. Sircar. AIChE J., v.45, N 2 (1999) 248-256. 
[4] W.E. Waldron, J.R. Hufton, S. Sircar, AIChE J., v.47, N 6 (2001) 1477-1479. 
[5] Y. Ding, E. Alpay. Chem. Eng. Sci., 55 (2000) 3929-3940. 
[6] G. Xiu, P. Li, A.E. Rodrigues. Chem. Eng. Sci., 57 (2002) 3893-3908. 
[7] Russian Patent No. 2363652, 2009. 
[8] A.N. Zagoruiko, A.G. Okunev. React. Kinet. Catal. Lett., 91 (2007) 315-324. 

Acknowledgements 
This work was conducted within the framework of budget project No.0303-2016-0017 for 

Boreskov Institute of Catalysis. 



OP-II-10 

103 

FLEXIBLE PRODUCTION OF SYNTHETIC METHANE:  
DYNAMIC OPERATION AND CONTROL OF FIXED-BED 

METHANATION REACTORS 

Jens Bremer, M.Sc.1, Prof. Dr.-Ing. Kai Sundmacher1,2 
1Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 

39106 Magdeburg, Germany, bremerj@mpi-magdeburg.mpg.de 
2Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany 

The current trend towards a more flexible production to react on markets as well 
as on volatile inputs (e.g., coming from renewable sources), contains many new 
challenges and requires concepts for dynamic process operation. Thus, the interest 
in prediction of the process dynamics has become more important than ever before 
[1-3]. The present work deals with the dynamics of fixed-bed reactors for carbon 
dioxide methanation by use of hydrogen generated via water electrolysis, an 
important example of power-to-X production processes. Particularly in view of 
vehicles fuelled with compressed natural gas (CNG), synthetic methane (SNG) is a 
very attractive, easy-to-distribute substitute fuel. Moreover, carbon dioxide 
methanation is a key reaction in the context of chemical conversion networks for the 
storage of electrical surplus energy. However, the reaction is strongly exothermic 
such that distinct hot-spots are formed within the catalytic fixed bed that can 
influence the catalyst stability and process safety [4]. By tracking the reactor 
dynamics and making use of advanced control methods, such as Nonlinear Model 
Predictive Control, one can identify non-conventional operation strategies which 
enable the reactor to operate more flexible, and with reduced hot-spot formation, 
guaranteeing a long term process operation. 

                                          

Figure 1. Operation regimes of exothermic fixed-bed reactors; conversion (left); maximum bed 
temperature (right); stable low conversion regime (I); stabilized via feedback control (II); 

stable high conversion regime (III); Arrows indicate the reactor’s history 
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SYNGAS PRODUCTION FOR SOFC VIA CATALYTIC  
OXIDATION OF DIESEL FUEL 

Shoynkhorova T.B.1, Snytnikov P.V.1,2,3, Simonov P.A.1,3, Potemkin D.I.1,2, 
Rogozhnikov V.N.1, Kulikov A.V.1, Belyaev V.D.1,2,3, Sobyanin V.A.1 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Novosibirsk State University, Novosibirsk, Russia 

3UNICAT Ltd, Novosibirsk, Russia 

Hydrogen is widely considered as a clean energy carrier for the future. Steam 

reforming (SR), partial oxidation (PO) or autothermal reforming (ATR) of hydrocarbon 

fuels are recognized as commercially competitive methods to produce hydrogen. 

Catalytic autothermal reforming is considered as one of the most effective methods 

of producing hydrogen from heavy hydrocarbon fuels for solid oxide fuel cell (SOFC) 

which can directly use CH4 as well as CO as fuels with the addition of sufficient 

steam feeds [1]. Diesel is an attractive fuel because of high energy density, wide 

applications and well – constructed infrastructure. Much attention is focused in the 

world now on the development of catalytic reformers of liquid hydrocarbons [2,3]. 

Optimization of the reformer design, associated with a number of technological 

details such as fuel evaporation, mixing and feeding, and the selection of the 

optimuml reaction conditions are the main trends in the development of diesel-fuelled  

SOFC-based power plants. However, the performance of a reformer is highly 

dependent on its catalyst. Many types of catalysts have been investigated for 

improving the performance of diesel reforming catalysts [4,5].  

The novel sorption-hydrolytic deposition technique enables production of highly 

dispersed catalysts based on noble metal (Pt, Ru, Rh) particles of 1-2 nm in size [6]. 

The method is easy to implement and has a great potential for catalyst industry 

applications. In this work, composite oxide Ce0.75Zr0.25O2– supported Rh, Ru and Pt 

in amount of 0.1 mmol/g (1 wt. % Ru and Rh, 1.9 wt. % Pt) were tested in SR of  

n-hexadecane (HD) and ATR of diesel fuel. Among the catalysts tested in SR under 

the following operating conditions: H2O/C = 3, GHSV = 23,000 h–1, T = 550 °C, the 

Rh-based sample showed the best activity – it provided complete conversion of the 

fuel during 8 h on stream and the outlet concentrations of H2, CO2, СО and СН4 close 

to the equilibrium values (Fig. 1). 

The catalysts supported on structured carriers (FeCrAl blocks) provide controlled 

reaction conditions throughout the reactor volume that favorably competes, for 
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example, fixed bed reactors. The use of the structured catalysts provides efficient 

heat and mass transfer, decreased gas dynamic resistance, improved catalyst 

performance that allows reducing the catalyst quantity per unit volume of the reactor. 

The opportunity to perform the process under controlled optimum conditions allows to 

increase the selectivity and minimize undesirable side reactions, such as coke 

formation. 

  
Fig. 1. The HD conversion and products distribution over 1.9 wt. % Pt/CZ,  

1 wt. % Ru/ CZ (a) and 1 wt. % Rh/ CZ  (b) in the SR as a function of time on stream 

In the present work, active component Rh/CZ was supported on FeCrAl metal 

meshes using Al2O3 as a binding structural component. The obtained catalyst Rh/CZ-

-Al2O3/FeCrAl was tested in the reactions of SR and ATR of HD and diesel at 

various temperatures and gas flow rates. Operating conditions were found to provide 

a 100 % conversion of n-hexadecane and diesel and stable catalyst activity for a long 

time-on-stream exposure. 
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NUMERICAL SIMULATION OF INDUSTRIAL SCALE AUTOTHERMAL 
CHEMICAL LOOPING METHANE REFORMING FOR SYNGAS 

PRODUCTION IN A DUAL FLUIDIZED BED REACTOR 
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Methane reforming is one of the important technologies for the production of 

syngas. Steam methane reforming (SMR), the dominating methane reforming 

technology, emits on average about 7 kg of CO2 per kg of H2 [1]. The related 

industrial one that produces about 75 % of word’s total hydrogen, is responsible for 

around 3 % of the worldwide CO2 emissions. Converting methane to syngas more 

efficiently and environmentally friendly is of vital importance to address global 

warming. Autothermal Chemical Looping Reforming (a-CLR) is a process that has 

the potential to reduce CO2 emissions and minimize energy losses [2]. It is generally 

realised in a dual-fluidized bed reactor with a fuel reactor (FR) and an air reactor 

(AR), respectively. The oxygen carrier (OC) particles are oxidized by air in the AR, 

while in the FR, the OC is reduced by the syngas and acts as catalyst for methane 

reforming. Most prevous studies focused on the development and characterization of 

the solid. Tests with experimental demonstration units have also been reported. The 

functioning and potential performance at commercial scale has, however, not been 

studied in sufficient detail.  

In this work, a 1-D model was developed to simulate an industrial scale a-CLR. It 

couples fluidised bed hydrodynamics including interfacial transfers, with intrinsic 

reaction kinetics including catalyst deactivation. A unit equivalent to 50 conventional 

SMR pipes was simulated as schematically shown in Figure 1. A Nickel based 

OC/catalyst was considered due to its high activity. The required design and 

operating conditions to reach a target operating temperature and CH4 conversion 

were studied. The effects of the main operating parameters on the design and 

performance of both reactors were analyzed.  

Unlike in Chemical Looping Combustion (CLC), the OC is only slightly oxidized in 

the AR to maintain sufficient catalyst activity in the FR. Nevertheless, autothermal 

operation can be guaranteed. Interfacial transfer limitations affect the performance of 
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both the AR and FR. Because of the relation between the minimum fluidization 

velocity, terminal velocity and the particle size, the latter is also seen to have a 

significant effect on the reactor performance. The operating temperature of the FR 

affects the conversion of the OC in the AR due to a higher oxidization rate of Ni. A 

higher temperature difference between the AR and FR allows to lower the solids 

circulating rate, while hardly affecting the oxygen/fuel ratio. Energy recovery of the 

outlet gas of both reactors, as shown in Figure 1, allows to increase the hydrogen 

production. 

AR
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FR
BFB

OC
Oxidized

OC
Reduced

Air

Pre‐heated 
Air

N2 (+ O2)

CH4 (+ H2O)

Syngas 
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 H2O+CO2 
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Figure 1. Schematic description of autothermal Chemical Looping Reforming 
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PERFORMANCE AND SELECTIVITY COMPARISON OF PACKED 
BED AND TUBE REACTORS IN SELECTIVE HYDROGENATION 
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1Stoli Catalysts Ltd, Coventry, CV3 4DS, United Kingdom,  
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(Despite advances of the continuous flow manufacturing in the pharma and fine 

chemical synthesis, heterogeneously-catalyzed gas-liquid reactions attract rather 

little attention. It is particularly surprising considering that catalytic hydrogenation 

constitutes at least 10 % of the fine chemical reactions. Compared to the state of the 

art batch processes, hydrogenation in flow improves productivity, process efficiency 

and process safety. Quality by design can be achieved with online process 

monitoring, and repetitive non-productive operations eliminated such as heating or 

substrate loading. Low-volume flow reactors make dealing with explosive hydrogen 

or toxic compounds safer because an unlikely leak results in a limited release.  

Packed-bed reactors are simple and therefore widely studied for hydrogenation in 

flow. The reactors, unfortunately, may show the non-uniform distribution of gas and 

liquid that decreases the product selectivity and the reactor throughput. Small 

particles of the widely used catalysts create very narrow fluids pathways and result in 

high pressure drop. Therefore, a lot of energy is consumed on pumping with severe 

barriers for process scalability.  

In the work presented, we compared the micro packed-bed reactors (6 mm ID, 5-

30 mm long) with catalyst-coated tube reactors (1.27 mm ID, 5 m long) in 

hydrogenation reactions of 2-methyl-3-butyn-2-ol (MBY) over a 5 wt % Pd/ZnO 

catalyst, cinnamaldehyde (CAL) over a 12 wt % Pt/SiO2 catalyst, as well as oleic acid 

over a 5 wt % Pd/C catalyst. The comparison was performed with the same catalyst 

amount under identical conditions; the tube reactors were provided by Stoli  

Catalysts Ltd. 

The tube reactors showed a high selectivity of 97-98 % in the MBY hydrogenation 

and above 80 % in CAL hydrogenation. The packed-bed reactors demonstrated a 20-

40 % lower selectivity under the same conditions. The packed-bed reactors, 

moreover, required a longer residence time to reach complete conversion compared 

to the catalyst-coated tubes. The difference is caused by internal and external mass 
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transfer limitations in the packed-bed reactors facilitated by the limited interphase 

gas-liquid boundary and uneven distribution of the fluid velocity profile across the 

reactor cross-section. 

A significant difference between the catalyst-coated tubes and the packed bed 

reactors was observed in terms of the pressure drop. The catalyst-coated tube 

reactors with the opening of 1.27 mm showed a low pressure drop even despite their 

length of 5 m. The packed-bed reactors demonstrated the pressure drop a factor of 

3-40 higher even despite a substantially shorter length of 5-30 mm. The Pd/C 

catalyst even had to be diluted by inert particles to perform experiments. 

Therefore, the work shows that the catalyst-coated tube reactors provide a 

significantly higher selectivity and performance compared to the packed-bed reactors 

under the same reaction conditions. The pressure drop, moreover, is significantly 

lower in the catalyst-coated tubes allowing to connect them in series for the higher 

reaction throughput. As an example, a single 5 m tube allows for a 100-300 g/day 

throughout in MBY and oleic acid at a low hydrogen pressure. 

 Acknowledgements 
We acknowledge the support of the European Research Council Proof of Concept grant (project 

Micarf 693739) and InnovateUK grant (900041) for funding this research. 



OP-II-15 

113 

THE EFFECTS OF INTRAPARTICLE DIFFUSION PHENOMENA ON 
DIMETHYL ETHER DIRECT SYNTHESIS 
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Introduction 
Dimethyl ether (DME) is considered a valid alternative to liquefied petroleum gas 

(LPG) and diesel fuel. Traditionally DME is produced from syngas in a two-step 
process consisting in methanol synthesis followed by methanol dehydration (indirect 
synthesis) [1]. To improve the process efficiency, many efforts have been made in 
the last decades to develop the one-step direct synthesis, combining methanol 

(Cu/ZnO/Al2O3) and dehydration catalyst (zeolites or -Al2O3). The two catalysts can 
be either mechanically mixed or intimately coupled by producing hybrid pellets [2]. 
The intraparticle diffusion phenomena have a strong influence on the reaction 
kinetics, which in turn affects the thermal behavior of the reactor, especially under 
industrial relevant conditions. However, these effects have not been deeply 
investigated in literature. 

Methods 
In order to compare the two configurations (bed of mixed pellets vs. bed of hybrid 

pellets), heterogeneous models of a single tube of a multi tubular fixed bed reactor 
for the direct DME synthesis have been developed. The models consist of i-species 
mass, energy and momentum 2D balances for the gas-phase, coupled with i-species 
mass and energy balances for the catalyst phases (one solid phase for the hybrid 
pellets, two solid phases for the mixed pellets) accounting for concentration gradients 
(1D) in isothermal pellets. A reaction scheme including methanol (MeOH) synthesis 
from CO2, Reverse Water Gas Shift (RWGS) and MeOH dehydration has been 
adopted with kinetics taken from the literature [3]. The model equations have been 
implemented in gPROMS® for the numerical resolution of the boundary value 
problem. 

Results 
The simulations have been performed considering different feed compositions 

(consisting of H2, CO, CO2, CH4) obtained from biomass gasification. The results 
show that the hot-spot temperature of the solid phase of the reactor loaded with 
hybrid pellets is much higher compared to that reached with the mechanical mixture 
configuration (Fig. a), and the DME yield is favored when the hybrid pellet 

mailto:gianpiero.groppi@polimi.it


OP-II-15 

114 

configuration is adopted (Fig. b). These results can be explained considering that, in 
the hybrid catalyst pellet, the DME synthesis reaction consumes the methanol 
produced by the MeOH synthesis, while WGS removes H2O produced by both MeOH 
and DME syntheses. This results in a synergistic effect on the conversion rate with 
respect to the mechanical mixture, where, due to intraparticle diffusion limitation, the 
catalyst efficiencies (Fig. c-d) decrease both in the MeOH catalyst pellets, because of 
the equilibrium approach, and in the DME catalyst pellets due to combined effect the 
lower methanol concentration and the higher water content. 

 
Figure. Hybrid pellets vs mechanical mixture. Upper panels: catalyst temperature profile (a)  
and DME yield profile (b); lower panels: catalyst efficiency profiles for MeOH synthesis (c)  

and for DME synthesis (d). Tube dimension: L = 8 m; D = 1 inch.  
Operating conditions: Tin = 323 K; Pin = 30 bar; GHSV = 1407 h–1 
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In the past decade, the alternative routes of ethylene production from the 

renewable oil-independent sources have been successfully commercialized [1]. For 

the low-tonnage production of ethylene and ethylene-based innovative materials, the 

process of bioethanol catalytic dehydration to ethylene appears to be economically 

promising. The process is strongly endothermic and requires energy supply around 

1.7 GJ per 1 ton of C2H4; thus, the proper temperature control in the reactor is a key 

operation factor for this process. Pilot-scale studies and process simulation in the 

tubular reactor on industrial alumina catalyst as cylinders were carried out in [2]. 

Further, more active acid-modified alumina catalyst was proposed [3].  

In the present paper, experimental and theoretical studies of the ethanol 

dehydration process on the ring-shaped alumina based catalyst developed by BIC 

SB RAS were performed. Replacement the cylindrical granules with the ring-shaped 

ones allows to intensify the radial heat transfer inside the tube, as well as to increase 

the yield of ethylene and to reduce the hydraulic resistance of the bed.  

To simulate the process in the multi-tubular fixed bed reactor, a pseudo-

homogeneous 2D model [2] was used. Taking into account the requirements for 

activity and mechanical strength, the ring sizes were determined as follows: outer 

diameter (D) 5.6…6.0 mm, height (h) 2.0…6.0 mm, wall thickness () 0.8…1.0 mm. 

Ethanol-to-ethylene dehydration on acid-modified ring-shaped alumina catalyst 

6×6×1 mm (D×h×) was studied experimentally in the pilot-scale setup with U-tube 

reactor 27.3 mm (ID). The process parameters were varied within the ranges as 

follows: the linear flow velocity 0.29-0.63 m/s, the temperature of the heating agent 

(Tw) 380-450 °C, and the height of the catalyst bed was 1.19 m or 1.42 m.  

Under the conditions given above, the best ethylene yield on the ring-shaped 

alumina catalyst in the tubular reactor was as high as 98.0 mol %; it was obtained at 

Tw = 420 °C and GHSV = 920.5 h–1. 
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A comparative study of the BIC’s proprietary catalyst in the form of a ring and of 

the industrial catalyst in the form of a cylinder was carried out in tubular reactor under 

similar conditions, namely, 96 wt. % ethanol, Tw = 438 °C, GHSV = 923 h–1. The 

yield of ethylene was 97.4 and 86.1 mol. % with ethanol conversion 98.9 and 

99.9 mol. % on rings and cylinders, respectively. An index CI (t/t) characterizes the 

specific ethanol consumption per 1 ton of ethylene, while index PCAT (kg·g–1·hr–1) 

demonstrates the unit catalyst productivity for ethylene per year. Both indexes are 

plotted in Figure. 
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Figure. The comparison of the process performance indexes  

for cylindrical (А) and ring-shaped (B) catalysts 

As a result of this study, we can conclude that on the ring-shaped particles 

ethanol-to-ethylene dehydration proceeds more efficiently than on cylindrical ones; 

the specific ethanol consumption is 11.4 % lower, and the catalyst productivity for 

ethylene is 14.5 % higher. Thus, the acid-modified alumina ring-shaped catalyst 

6×6×1 mm in sizes may be recommended for practical use in the ethanol-to-ethylene 

dehydration process in multi-tubular reactor. 
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Conventional design criteria for catalytic testing result in long packed bed 
reactors with tube diameters much larger than the catalyst pellet size, as otherwise 
poor axial and radial dispersion within the bed would be expected, which makes it 
difficult to interpret results of kinetic experiments. These criteria lead to relatively 
large and costly reactors which require substantial gas flow rates, are rather complex 
and may pose a significant level of hazard. 

On the contrary, a reactor concept where pellets are packed in a tube of only 
slightly larger diameter came up in the 1960s and was named Single Pellet String 
Reactor (SPSR) by Scott et al. in 1974 [1] who already describe the similarity of the 
reactor’s flow behaviour to conventional packed beds. But are SPSRs suitable for 
kinetic experiments and catalyst performance 
testing? Recent publications [2-4] demonstrate a 
renewed interest in this reactor concept, 
including its use for catalyst testing. 

In this work, an attempt is made to 
systematically characterise SPSRs of spherical, 
non-porous particles in cylindrical confining walls 
using computational fluid dynamics. A parameter 
study on the reactor geometry is conducted 
whilst keeping the space time, defined here as 
ratio of fluid volume across the catalytic bed to 
the volumetric flow rate, through the reactors 
constant. Residence time behaviour as well as 
the conversion of a hypothetical first order 
irreversible gas phase reaction at the pellet 
surface which is considered both isovolumetric 
and isothermal, are evaluated and compared to 

Figure 1. Conversion results for SPSR 
scenarios; dotted line indicating 5 % 

deviation to ideal PFR behaviour 

mailto:johanna.fernengel@ch.tum.de
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corresponding plug flow conditions. Finally, a design criterion is derived for which 
SPSRs show a behaviour close to ideal plug flow.  

Overall bed conversion results of various simulated SPSR scenarios are shown in 
Fig. 1, where the base case corresponds to a reactor with 20 pellets and a particle-
to-cylinder-diameter ratio of        . A reactor with similar geometry, except that 
the pellets are now stacked along the tube axis on top of each other, yields a slightly 
larger conversion. Bed conversion is also increased with the scale of the reactor, with 
an increase in pellet size at constant cylinder diameter as well as with increasing 
pellet number, as expected by criteria for conventional fixed-bed reactors (cf. [5,6]). 
Introducing a variability in catalyst size has the opposite effect. Though not shown 
here for brevity, the residence time 
distributions are in between the ideal 
functions for laminar flow and plug flow 
with behaviour closer to plug flow 
where conversion results indicate near 
plug flow behaviour. A design criterion 
relating the deviation to plug flow 
conversion to reactor geometry, flow 
condition and diffusion coefficient is 
proposed as indicated in Fig. 2. 

Conversion results deviating less 
than 5 % from ideal plug flow can 
readily be achieved with SPSRs. They are a well suitable reactor concept for kinetic 
experiments, reducing the required gas flow rates and levels of complexity, cost and 
hazard substantially. Single pellet string reactors deserve a revival after falling into 
oblivion decades ago. 
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Figure 2. Trend analysis showing deviation to  
PFR conversion as function of pellet number,  

pellet-to-cylinder diameter ratio and Péclet number 
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The post-polymerization functionalization of polyolefins with polar monomers is a 
useful technique allowing the incorporation of advanced properties to the virgin 
material, thus expanding its commercial applications [1]. The main industrial route 
employed for polyolefin functionalization is free-radical induced grafting (FRIG) [2]. 
The mechanism of FRIG involves the formation of mid-chain macroradicals (MCRs) 
via hydrogen abstraction caused by the attack of primary free radicals, created during 
the decomposition of the chemical initiator (usually a peroxide). Grafting points are 
formed by the addition of MCRs to the double bond of the vinyl monomer. This  step 
is usually refered to as grafting “from”. However, primary radicals are not selective 
during their attack, and they can directly add to the unsaturation of the vinyl 
monomer, producing homopolymer radicals as by-product. Nonetheless, by the 
recombination of homopolymers with MCRs, further functionalization can be 
achieved, leading to the formation of grafting “to” points. Furthermore, the reactive 
mixture could become multiphasic due to the incomplete solubility of monomer and 
chemical initiator in the molten polyolefin. The selection of the type and initial amount 
of polyolefin, initiator, monomer, the temperature, the pressure, the mixing efficiency, 
and the reactor have a crucial effect on the performance of this type of reactive 
process [3]. Thus, due to the multiple variables involved, and despite of being a 
mature and well-stablished industrial process, there are still issues to be addressed 
to enhance the process and properties of the final product during the post-
polymerization functionalization of polyolefins via FRIG [4].  

Recently, an advanced model for the kinetics of functionalization of polyolefins 
with vinyl monomers via FRIG was developed at LCT [5]. The kinetic model, based 
on the kinetic Monte Carlo (kMC) technique, assumed in a first istance isothermal 
conditions and perfect macromixing (single homogeneous phase model). 
Furthermore, it accounts for diffusional limitations on the microscale. Because the 
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reaction temperature is close to the ceiling temperature of the vinyl monomer, 
depropagation steps are also taken into account. In order to accurately perform the 
random sampling of macromolecules during hydrogen abstraction reaction events, a 
mass-weighted CLD for the polyolefin is employed in the kMC algorithm. The model 
allows the calculation of parameters to evaluate the extent of reaction, such as 
monomer conversion, grafting selectivity an yield, as well as the complete 
microstructural characterization of the macromolecular product, such as grafting 
“from”, grafting “to”, crosslinking density, number of grafts and crosslinks per 
individual chain, and the chain length distribution (CLD) of homopolymer, polyolefin 
and grafted chains.  

In the present contribution, the single-phase homogeneous model is extended 
toward phase segregation, due to the incomplete solubility of monomer, initiator and 
solvent in the molten polyolefin. Hence, two phases are assumed, one rich in 
monomer and one rich in polyolefin so that the model becomes applicable to 
describe the reactor performance during reactive processing. The monomer-rich 
phase will produce mostly homopolymer chains, whereas grafted polyolefin and 
homopolymer will be brought about in the polyolefin-rich phase. The reactants and 
products formed in one phase can be transferred to the other phase until the 
saturation point (given by the solubility of the components in each phase) is reached. 
It is assumed that the polyolefin is not transferred from the polyolefin-rich phase to 
the monomer-rich phase, due to the low affinity of non-polar long chains with more 
polar compounds. The mass transfer over the interface is accounted for based on 
fundamental principles. The extended model can also be applied for multiple 
temperature zones and injection points. Hence, the model can be applied for a 
variety of industrial reactor operation modes. 
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Polystyrene (PS) is a type of plastic with numerous applications in different 

sectors, like packaging and construction. PS represents 6 % of the polymers 

produced in Europe [1]. However, due to its high chemical stability, polystyrene 

waste has large environmental impacts for a long period of time. A promising route to 

PS recycling is pyrolysis. Large yields of the styrene monomer are obtained. Styrene 

can be reused for the production of new polystyrene. PS pyrolysis thus offers a path 

towards a plastic-based circular economy. 

Nowadays, the fluidized bed reactor is one of the preferred technologies to apply 

for multiphase processes like pyrolysis due to its ease in design and operation. 

However, fluidized bed reactors suffer from operational limits, eg the maximum 

fluidization gas flow, while mass and heat transfer rates are moderate. These limits 

are observed to decrease in a fluidized bed operating in a centrifugal field. Gas-Solid 

Vortex Reactors (GSVRs) sustain a rotating solid bed by continuous tangential 

injection of fluidizing gas through multiple small injection slots. GSVRs are known to 

offer advantages over conventional fluidized bed reactors in the gravitational field; 

the bed is densely packed, giving higher gas-solid slip velocities. The latter results in 

enhanced heat and mass transfer. 

At the Laboratory for Chemical Technology (LCT, Ghent University), fluidization in 

a GSVR is visualized and studied in a GSVR demonstration unit. The goal is to 

further optimize the operational benefits for a GSVR in processes like biomass fast 

pyrolysis, oxidative coupling of methane, and more. Additionally, Computational Fluid 

Dynamics (CFD) simulations of these processes have demonstrated various 

capabilities of vortex technology, as compared to conventional fluidized bed reactors 

[2] [3]. The work presented here focuses on a computational study of the applicability 

of GSVR technology for the pyrolysis of PS. Three-dimensional multiphase, Eulerian-

Eulerian simulations have been performed with ANSYS Fluent using a basic kinetic 
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model for PS pyrolysis taken from the literature [4]. The kinetic model considers 

thermal degradation of PS into several products: non-condensable gases, light 

olefins, aromatics and styrene monomer. Combining the kinetic model with the CFD 

model allows to study PS degradation into a useful liquid fraction, more particular into 

the styrene monomer by optimization of the process conditions and the reactor 

design.  
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A novel system for contacting gases and liquids, which is suitable for many 

applications involving gas-liquid contact such as CO2 capture and brine desalination, 

has been developed and experimentally characterized [1, 2]. The system consists of 

a vertical vessel with gas and liquid ports and inert particles that enhance mixing and 

provides high gas–liquid interfacial area. The optimum conditions for CO2 capture 

and brine desalination where statistically demonstrated using Minitab software [3], 

and verified experimentally to be at low gas flow rate; however, the gas velocity can 

have a major effect on the motion of inert particles inside the reactor. Uniform 

particles motion and hence good mixing within the reactor ensure efficient absorption 

and stripping process; at the same time, the inert particles volume fraction has 

significant effect on CO2 capture and minimum effect on desalination [2]. The 

Computational Fluid Dynamics (CFD) models which will be presented in this work will 

show the minimum gas velocity that insure high mixing through monitoring the flow 

patterns inside the reactor. Flow patterns variables were studied in a semi-batch and 

continuous mode flow. These variables and ranges are: Gas flow rate of 500-

3500 ml/min, particle average size of 5-15 mm, particles volume fraction of 0-

10 vol. %, orifice diameter of 1-4 mm, brine flow rate of 10-40 ml/min. in the 

continuous mode and brine volume of 1-3 L in the semi-batch mode using CFD 

software packages ANSYS Fluent. The flow domain was constructed on Design 

Modeller, two dimensional CFD of gas through high salinity brine in both semi-batch 

and continuous mode flow. In the semi batch-mode, the setup of the mesh is 

assumed to consist of four sections, namely, gas inlet, gas outlet, water body and 

space, while in the continuous mode two more section, the brine inlet and outlet, 

have been introduced. Volume of fluid (VOF), Mixture and Eulerian multiphase [4-6] 

models well be compared to investigate the hydrodynamic flow behavior in the 

system which consist of stainless steel cylindrical vessel with 78 mm internal 

diameter, 700 mm height, and a total working volume of 3000 ml. The simulations 

were carried out under transient and gravitational acceleration conditions. The 
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realizable k-ε model is taken to consider the turbulence effects of the flow of gas 

through brine water. The residual tolerance was set to 0.0001 for all factors to show 

convergence of the calculations. Each model has been run in double precision mode 

to increase the accuracy of calculation. The momentum and pressure equation was 

solved using the coupled pressure-velocity scheme with volume fractions. The 

gradient was calculated using Least Squares cell based method. Pressure 

interpolation was determined using PRESTO scheme. A third order MUSCL scheme 

is used to solve the momentum and turbulence equations [7-9]. Figures 1-3 show the 

geometry and mesh structure for the reactor system in the semi-batch mode, and 

Figures 4-9 show some results for the VOF model as contours of pressure, mixture 

velocity, water and air volume fraction, turbulence kinetic energy and Eddy viscosity 

for the semi-batch mode without mixing particles at gas velocity 1 m/s after 10 

seconds of flow. Mesh independent study for each model will be presented to make 

sure that results are independent of the mesh resolution [10]. 

 

 

 

 

 

Fig 1. Reactor system diagram 
and 2D geometry 

Fig 2. Mesh structure in semi-
batch mode 

Fig 3. Conical part of reactor 
system with mesh structure 
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Although massive progress is being made in the use of renewable materials as a 

source of energy, the dependence of heavy duty long distance transportation (cars, 

trucks, ships, aircraft, etc) on petroleum based fuels remains dominant. This is 

supported by continued heavy investments in maintaining and developing large scale 

petroleum based refineries. However, the feed to these refineries, which historically 

was only crude oil (and in the case of SASOL, coal), is changing rapidly. The “new” 

technology is dominated by gas to liquid (GTL) plants, but there is no restriction on 

the source of the gas and or liquid which could come from renewables, such as 

biogas, municipal waste, tyres, plastic and so forth. Interestingly, any large scale 

plant making transportation fuels from these feedstocks have much the same 

downstream processing units, whether going via Fischer-Tropsch or methanol. They 

comprise of some or all of the following: Fischer-Tropsch (FT), hydrocracking, 

oligomerisation, hydrocracking with or without recycle and separation. The challenge 

here is that the best operating mode of these reactors and systems depend on the 

feed used and the inter-connectivity of the units, which could be considerably more 

variable that in the past. 

One of the challenges in developing new flow sheets is to reduce the capital cost 

and optimise the operations by better integration. Large capital cost savings can be 

achieved by using air in the reformer in place of oxygen. This has signifcant 

consequences to the downstream operations, in particular the operation of the FT 

reactor, which currently is optimised to work at conversions of 60 % with recycle now 

has to operate in once through mode at high conversion to offset recycling the 

nitrogen [1]. Moreover the FT product distribution represented by the alpha value has 

to be optmised to maximise the distilate yield from hydrocracker. These concepts can 

be studied by combining elementary multi-phase, multi-species models into a flow 

sheet. 

A simplified flow sheet of potential flexible process is showen below. These 

reactors operate in multiphase mode which makes operation and prediction of their 

mailto:Klaus.moller@uct.ac.za


OP-II-23 

131 

behaviour considerably less intuitive than single phase reaction systems. This work 

reports on progress towards developing a modelling framework which proposes to 

use multi-species, multi-phase reactor units, incorporating multi-species reaction 

kinetics sufficiently complex to describe elementary phenomena and phase 

equilibrium of the real system. The development will focus on coupling reaction 

systems which operate with up to 200 carbon numbers within a flow sheet. The 

process flow sheet will be used in sections and as a whole to study the influence of 

nitrogen content on the downstream performance and the effect of the alpha value on 

the distillate yield of the process. 
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Some technological processes operate at low inlet concentration of raw materials, 
due to the thermal runaway, explosive limits, and other kinds of restrictions. 
Evidently, increasing the reactant’s load would greatly improve the process 
productivity provided that existing technological facilities meet the new requirements. 

Synthesis of nicotinic acid (NA) by heterogeneous catalytic oxidation of -picoline 

(P) is carried out at the initial concentration as low as 0.8-1.2 %. To be efficient, the 

exothermic process under consideration should proceed within a narrow range of the 
process temperature. On the one hand, this excludes the condensation and/or 
crystallization of the products; on the other hand, this will ensure the thermal stability 
of the catalyst and will limit the undesirable increase in by-products formation [1]. 
Besides, due to kinetic reasons it is necessary to maintain a significant excess of 

oxygen and water vapor with respect to P as the reactant to be oxidized [2].  
In the present paper, the role of factors that could contribute to the intensification 

of the process of NA synthesis in a multi-tubular reactor at the increased 

concentration of P, has been investigated by methods of mathematical modeling [3]. 
To solve the problem, we used a 2-D quasi-homogeneous model of a tubular reactor, 
and the detailed kinetic reactions model on V2O5-TiO2 catalyst [1] as well. In 

simulation, we varied the initial ratio P:O2:H2O, coolant temperature, linear gas 

velocity, length of the catalyst bed, and the inner tube diameter. Increasing the initial 

P concentration up to ~3 % leads to an increase in the specific catalyst productivity 
by 1.5-2 times. For a given production capacity, the process intensification can 
reduce by 2-5 times the number of tubes with respect to the conventional multi-
tubular reactor.  
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Over the last decade, the dependence on fossil feedstock has become a source 

of preoccupations for chemical industry highlighting the need to move towards 

renewable raw materials. In this sense, carbohydrates constitute three quarters of the 

available renewable biomass. Simple carbohydrates, such as mono- and 

disaccharides, are obtained by catalytic hydrolysis of cellulose, hemicelluloses and 

starch, and their further transformation into useful derivatives in an obvious way 

forward. Glucose isomerization is an important step in its subsequent transformation 

into platform molecules, for example, 5-hydroxymethylfurfural (5-HMF), which can be 

further processed into fuel additives, paints, and a variety of fine chemicals. While 

fructose can be converted into 5-HMF in a rather straightforward way, glucose 

remains the main building block of lignocellulosic biomass, and its conversion 

towards fructose and further planform chemicals remains challenging. Glucose 

isomerization is a complex chemical process characterized by formation of numerous 

side products.  

In this work we present a novel approach for glucose isomerization to fructose 

based on a combination of a nanostructured heterogeneous catalyst and transient 

operation in flow. A 5 wt. % Ru supported onto hypercrosslinked polystyrene (HPS) 

catalyst was synthesized via conventional wet impregnation method following the 

previously reported protocol [1]. The temperature modulations were realized using 

induction heating of magnetic microparticles in a trickle bed reactor following the 

approach developed in our previous study [2]. The catalyst particles were mixed with 

magnetic microparticles to create a uniform catalyst bed. When exposed to an AC 

magnetic field at a frequency of 100 kHz, magnetic microparticles undergo a 

magnetization reversal process leading to energy losses which generate heat in the 

catalyst bed. Glucose (concentration: 0.5 mol/L in water) was fed with an HPLC 

pump and gas (H2/N2 mixture) was fed with a set of MFCs. In all experiments, the 

pressure was maintained at 17 bar with a back pressure controller, the temperature 
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was varied in the range of 110-130 °C and the period of temperature modulations 

was varied in the range of 23-210 s. 

The steady state reaction over the supported Ru catalyst yields sorbitol as the 

main product with a selectivity to fructose below 10 %. However under periodic 

temperature modulation, the selectivity to fructose increases to 82 % at the same 

conversion level. In order to shed some light on the origin of this exceptional 

selectivity switch, time averaged coverages with glucose and hydrogen species were 

estimated using a transient kinetic model previously developed for hydrogenation of 

glucose over the Ru/HPS catalyst [3]. The model was based on two kinetics with 

competitive adsorption for hydrogenation and isomerization reactions. The kinetic 

model qualitatively described the behavior observed. The higher fructose yield under 

transient operation was explained by much higher time-averaged glucose coverage. 

A rather high hydrogen concentration in gas phase was required to maintain high 

catalyst activity and stability. At steady state conditions, the replacement of hydrogen 

with an inert gas drastically reduces the rate of hydrogenation without any 

enhancement in the isomerization pathway. 

A similar selectivity switch was observed in the transformation of maltose in the 

flow reactor. Hence, it can be concluded that the concept of fast temperature 

modulation can be extended to a wide class of reactions over Ru/HPS catalysts. 
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1. Introduction 
Biological self-assembly renders the cellulose polymers in plant cell walls 

resistant to deconstruction to monomeric sugars. Here we show experimentally that 
non-equilibrium spatiotemporal oscillatory states formed via autoregulatory 
(autocatalytic/ auto-inhibitory) reactions – either catalytic or enzymatic – in batch 
reactors fuelled by external energy sources result in faster hydrolysis of 
lignocelluloses leading to higher production of cellulosic biofuels. Enzymatic 
hydrolysis of hemicelluloses [1] in unmixed tubular reactors lead to activator-inhibitor 
type unsteady state limit cycles, while ionic-liquid mediated catalytic conversion of 
non-edible lignocelluloses [2] in batch reactors heated by oil-baths result in chemical 
chaos, characterized by chaotic strange attractors with fractal dimensions and 
positive Lyapunov coefficients. 

2. Methods 
A. Catalytic conversion of lignocellulose (Sunn hemp fibre) to biofuel precursors 

is performed in 15 ml well-mixed (at 500 rpm) batch reactors at 110 °C using ionic 
liquid ([Bmim]Cl) as a solvent and CuCl2 as catalyst. Water is added every half-hour 
at the rates of 25, 28.33, 33.33, 37.5 and 42.8 l/gm/hr, and the concentrations of 
glucose, fructose, hydroxymethyl furfural (HMF), levulinic acid (LA) and formic acid 
(FA) are measured every half-hour for 24 hours of the reaction time. 

B. Enzymatic hydrolysis of hemicellulose (xylan) is performed for 3 days with 
endo-xylanase enzyme at 40 °C in unmixed tubular reactors of 10 mm diameter kept 
in an incubator. The concentrations of the activator and inhibitor (xylose and 
xylobiose) are measured at every 3 cm interval along the reactor length at regular 
intervals of time. 

3. Results and discussion 
The catalytic hydrolysis of lignocellulose produces chaotic strange attractors with 

fractal dimensions and positive Lyapunov coefficients on product phase spaces. All 
the 5 products (glucose, fructose, HMF, LA, FA) exhibit aperiodic (i.e., non-repetitive) 
temporal oscillations, peaking at 5 hours for all water-addition rates, suggesting 5 
hours to be the optimum hydrolysis time in the domain of chemical chaos. 
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37.5 l/gm/hr of water-addition maximizes the concentrations of glucose, LA, FA – at 
all times, with their average yields peaking at 5 hours to 67.45 %, 12.42 %, and 
4.97 %, respectively. The non-oscillatory yields of glucose, LA and FA at 5 hours for 
water addition of 45 l/gm/hr (or higher) are much lower – 58.25 %, 3.51 % and 
1.39 %, respectively. Bioethanol yield of 78 % is obtained after 15 hours of 
Saccharomyces cerevisiae-mediated batch fermentation of glucose separated from 
the ionic liquid. 

The enzymatic hydrolysis of hemicellulose produces limit cycles at various times 
in the activator-inhibitor phase space all through the 3 days of hydrolysis, where the 
activators are the soluble sugars with Degree of Polymerization of 3 to 11, while the 
inhibitors are the monomer (xylose) and the dimer (xylobiose). These limit cycles 
correspond to the unsteady-state oscillatory spatial (longitudinal) patterns formed due 
to the inhibitor-activator reaction kinetics and the faster diffusion of the inhibitor along 
the length of the tubular reactor. As the hydrolysis proceeds, the limit cycles change 
from circular to elliptical. Initially, the rates of inhibitor formation and activator 
depletion are nearly equal, resulting in circular limit cycles, but as the hydrolysis 
progresses, the rate of inhibitor formation exceeds that of activator depletion, 
resulting in elliptical limit cycles. We observe that the non-equilibrium oscillatory 
patterns in the tubular reactor enhance the yield of reducing sugar by 8.7 % and 
14.1 % over no mixing and continuous mixing, respectively, after 1 day of hydrolysis, 
while xylose yield increases by 3.6 % and 7.9 %, respectively. 

4. Conclusions 
Thus, we show that non-equilibrium states constituting of spatiotemporal 

oscillatory patterns significantly promote the yields of biofuel precursors in batch 
reactors, e.g., by 16 % in catalytic conversion of lignocellulose, and by 14 % for 
enzymatic hydrolysis of hemicellulose. This new technology of employing non-
equilibrium spatiotemporal oscillations in batch reactors to enhance the yields of 
biofuel precursors accelerates and promotes the overall production of second 
generation lignocellulosic biofuels. 
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Active development of hydroprocessing technologies and hydrogen energy 

require the development of new efficient ways for production of hydrogen, 

prefereably from non-hydrocarbon feedstocks.  

Hydrogen sulfide seems to be the very attractive feedstock for this purpose. First, 

it is the conventional waste from oil and natural gas processing facilities. Second, the 

bonding energy of hydrogen in H2S is the lowest among all natural hydrogen-

containing compounds. 

Unfortunately, the reaction of hydrogen sulfide decomposition 

H2S  1/n Sn + Н2      (1) 

is characterized with severe equilibrium limitations. The complete H2S decomposition 

requires the extra-high temperatures (above 1500 °C), leading to high energy 

consumption, necessity to apply expensive thermostable materials and risk of 

backward element recombination at cooling stage. In (very typical) case, when the 

carbonaceous compounds (CO2, hydrocarbons) are present in the gas feedstock, 

such temperatures may also cause side reactions with formation of undesired 

products (coke, CO, COS and CS2). Due to these reasons, still there is no feasible 

technology for H2S decomposition in wide practical application. 

The new process approach [1] is based on the chemisorption enhancement of the 

decomposition reaction (1). The process, involving metal sulfide chemisorbent-

catalyst, includes cyclic alteration of two reaction stages technologically separated in 

time and space: 

H2S + MeSn  H2 + MeSn+1     (2) 

MeSn+1  MeSn + 1/n Sn      (3) 

As shown by thermodynamic calculations (Fig. 1), the reaction (2) is exothermic 

and the corresponding equilibrium conversion of H2S may reach 100 % at ambient 

temperature. Reaction (3) requires moderately increased temperatures (200-400 °С). 
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Fig. 1. Calculated enthalpy (left) and Gibbs free energy (right)  
changes in reactions (1-3) vs temperature 

The whole process may be thus realized at moderate temperatures with 

achievement of complete H2S decomposition, the backward recombination of 

elements is prevented by technological separations of stages (2) and (3) – hydrogen 

is not persent at stage (3).  

Low operation temperatures provide decrease of heat losses to environment, 

resulting in increased energy efficiency of the process. The process may be based 

on cheap standard equipment from conventional materials, thus significantly 

minimizing the capital costs. Besides, the low temperature at H2S chemisorption 

stage (2) makes possible to process feedstock gases, containing carbonaceous 

admixtures, without risk of their involvement to reaction and formation of undesired 

side products. 

The presentation will include overview of the available related experimental data 

and discussion of the possible process flow-sheets with their comparative analysis.  
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The conversion of dimethyl ether (DME) into olefins is an attractive route for 
complementing the production of olefins by steam cracking and catalytic cracking of 
naphtha. Moreover, it is an interesting alternative to MTO process (methanol to 
olefins) since DME is more reactive than methanol and its production is 
thermodinamically favored compared with that of methanol [1]. Deactivation of acid 
catalyst by coking is inevitable in this process and it is one of the main drawbacks for 
its industrial implementation [2]. In this sense, the understadning of the mechanism of 
DME conversion into olefins and its evolution caused by catalyst deactivation turn out 
to be crucial for advancing in the reactor and process design. 

In this work, a lumping model for the conversion of DME into olefins has been 
developed and several deactivation equations have been proposed in order to 
establish a global kinetic model that succesfully predicts the evolution of product 
concentrations with space time and time on stream. Accordingly, an acid catalyst was 
prepared by the agglomeration of a HZSM-5 zeolite (Si/Al = 140) with 
pseudoboehmite as a binder (30 wt %) and α-alumina as inert fill (20 wt %). 
Experimental data were collected from reaction runs that were carried out in a fixed 
bed reactor using the following conditions: 325-375 °C; 1.5 bar; space time,  
0-6.5 gcat h molC–1 and time on stream 0-18 h. 

A methodology based on the Levenberg-Marquardt algoritm has been developed 
in order to simultaneously fit the kinetic parameters at zero time on stream and the 
deactivation kinetics [3]. Figure 1a shows the lump-based kinetic scheme of DME 
conversion into olefins. This scheme involves the direct formation of olefins from 
DME (and methanol), hydryde transfer, oligomerization-craking and cyclizacion-
aromatization pathways. Each step of the kinetic scheme follows a classical 
Langmuir-Hinshelwood equation, considering that the adsorption of methanol and 
water attenuates the rates of reaction: 

 2

j j
j

MeOH H O

k P a
r =

1+K P +P
 (1)
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Figure 1b shows the evolution of the yields of each lump with the space time. As 

observed, the model allows for achieving an accurate estimation of the yields of light 

olefins (O) and paraffins (P), aromatics BTX and long chain hydrocarbons (C5+). 

Nontheless, catalyst deactivation is noteworthy during the reaction and therefore, a 

catalytic activiy variable was included in the kinetic model (a in eq. (1)). Several 

deactivation equations were tested for fitting the experimental data of evolution of 

yields with time on stream (dots in Figure 1c). The best fitting (lines in Figure 1c) is 

obtained considering that DME, O and BTX are the main precursor of coke and the 

presence of water attenuates the catalyst deactivation: 

 d DME O BTX 5.8

W W

k P +P +Pda- = a
dt 1+K P

 (2) 

Regarding the results, it can be stated that this lump-based model allows 

predicting with relatively good accuracy the product distribution of DME conversion 

into olefins in a fixed bed reactor considering the deactivation of the HZSM-5 

catalyst. 
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Figure 1. (a) Kinetic scheme for the transformation of DME into olefins and evolution of the lump 
concentrations with (b) space time and (c) time on stream at 350 °C.  

(dots are experimental data and lines are the model predictions) 
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Introduction 
The generation of plastic waste is increasing year by year. In the context of 

processing waste from electric and electronic equipment (WEEE) recycling the 
electric cable waste has attracted increasing attention in recent years. Therein, 
priority is generally given to the recycling of the conducting metal, due to its higher 
value and, as a consequence, large amounts of plastic from electric cable waste are 
released into the environment without an effective disposal [1]. This incorrect 
disposal causes great problems to the environment, since, plastics (part of electric 
cable) do not degrade quickly and can remain in the environment for a long time [2], 
A large part of this waste is disposed of in landfills or is incinerated [3]. New 
processes are needed to increase the percentage that is reccycled. The use of 
feedstock recycling, for example by resorting to pyrolysis may be an attractive 
alternative since it provides an opportunity to obtain a broad distribution of products 
including char, oil/wax and combustible gases from plastic wastes [4]. In this work, 
the influence of temperature on the thermal pyrolysis of the electrical cables waste 
(ECW) will be analysed. 

Experimental 
The ECW were provided by Pyroplas. The samples were washed and crushed 

but their particle size lacks homogeneity. The thermal pyrolysis experiments were 
carried out using an unstirred glass reactor in semi-batch operation at atmospheric 
pressure. The reactor was initially flushed with N2, then about 10 g of the plastic 
waste material were placed in the reactor which was heated at 10 °C min–1 to a final 
temperature ranging from 450 to 500 °C. The final temperature was maintained for 
90 min. On top of the eactor a condenser was installed and the coolant fed to the 
condenser was controlled by a thermostat at 20 °C to control the product in the 
gaseous phase. 

Results and Discussion 
The mass yield of the products obtained for thermal pyrolysis are described in 

Table 1, for the three temperatures studied the reaction time was 90 min after 
reaching the final temperature. 
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Table 1. Effect of temperature on thermal pyrolysis yields (wt %) at 90 min 

Temperature (°C) Solids Liquids Gases 
450 98.8 0.0 1.2 
470 97.0 0.6 1.4 
500 94.1 1.2 4.7 

It is observed from the results of Table 1 that the largest amount of products 
formed is in the solid phase (wax), results which are in accordance with Chaala [5]. 
For the lowest temperature (450 °C) it was not possible to collect any liquid phase 
products. It is important to note that the increase of 50 °C in the system did not cause 
significant changes in the yield of the products in the liquid and gaseous phase. 

The distributions of the products collected in the gas and liquid phase for the 
thermal pyrolysis are shown below in Figures 1a and 1b respectively.  

  
Figure 1. Product distribution (a) Gas phase and (b) Liquid phase 

The product formed in the gas phase is in the range of C1-C7 but with the major 
portion being between C2-C5 while the products collected in liquid phase are heavier 
but with a large portion of C8 being formed. The solid products formed are mainly 
waxes of high molecular weight. 
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MODELING OF MICROWAVE IRRADIATED AND 
HETEROGENEOUSLY CATALYSED EPOXIDATION  

OF VEGETABLE OILS 

Adriana Freites Aguilera1, Pasi Tolvanen1, Sebastien Leveneur1,2,  
Jyri-Pekka Mikkola1,3, Timothy Marchant4, Tapio Salmi1 

1Åbo Akademi, Chemical Engineering, FI-20500 Turku/Åbo, Finland, ptolvane@abo.fi 
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SE-90187 Umeå, Sweden 
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Oil extracted from plants, seeds and wood is a vast biomass resource, which can 

be used to elaborate a wide range of products, for instance, by epoxidation. 

Epoxidized vegetable oils are used for developing bio-lubricants, PVC-derived 

plastic-ware, as well as intermediates for the synthesis of polyols, glycols, olefinic 

compounds and stabilizers for polymers. Moreover, microwave irradiation (MW) is 

considered as one of the best process intensification technologies [1]. The 

Prileshajev oxidation is the most common method to epoxidize vegetable oils, by 

using peroxycarboxylic acid formed in situ from hydrogen peroxide and acetic acid. 

To enhance the reaction rate a solid catalyst can be used. The aim of this work is to 

develop an improved method for producing epoxidized vegetable oils with high 

yields, using less energy and shorter reaction times, applying MW technology 

combined with special mixing technology and a solid catalyst. Finally, a kinetic model 

was developed for the epoxidation reactions under different reaction conditions.  

Methods. Epoxidation of oleic acid was performed in a semi-batch reactor, by the 

so called Prileschajew oxidation. The perhydrolysis reaction (peroxyacetic acid 

formed in situ from acetic acid and H2O2) was enhanced by using a solid catalyst 

resin. The reactor system comprised a loop where the mixture was pumped through 

a cavity in which microwaves were irradiated and immediately recirculated back to 

the reactor. Experiments conducted under MW were compared with identical 

experiments carried out under conventional heating. A special mixing technology 

(SpinchemTM) was incorporated, which allowed to minimize mass transfer limitations 

of the bifacial system and to immobilize a solid resin catalyst. The reaction kinetics 

was modeled mathematically by applying numerical methods for the solution of stiff 

differential equations and optimization algorithms for parameter estimation. With this 
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NOVEL REACTOR DESIGNS FOR THE HYDROFORMYLATION OF 
LONG-CHAIN OLEFINS: FLEXIBILITY AND AUTOMATION ASPECTS 

Michael Jokiel1, Kai Sundmacher1,2
 

1Max-Planck-Institute for Dynamics for Complex Technical Systems Magdeburg, 
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jokiel@mpi-magdeburg.mpg.de 
2Otto-von-Guericke University Magdeburg, Chair of Process Systems Engineering 

Germany 

Introduction 
The design of new novel reactors can be done in many different ways. Especially 

for the production of fine chemicals highly flexible systems are needed. In our group 

dynamic optimizations were performed o identify the most promising reactor network 

for the homogeneously catalyzed hydroformylation of 1-dodecene using a thermo-

morphic multicomponent solvent (TMS) system for catalyst recycling [1]. The reaction 

network and kinetics are complicated; therefore it is not possible to apply standard 

reactor design methods. Two reactor systems were found to be most promising: (1) a 

repeated semi-batch reactor (RSBR) followed by a continuously operated stirred tank 

reactor (CSTR), (2) a helically coiled tubular reactor (HCTR) followed by a CSTR. 

Results and Discussion 
Both reactor concepts have been constructed and operated for long time periods 

with closed catalyst recycle (Figure 1) [2,3,4]. In this contribution, both concepts will 

be compared regarding their performance while taking also the effort of the 

construction and operation into account. Our model-based predictions (see [1]) and 

the experimental results indicate, that both candidates feature almost the same 

performance (yield, selectivity) when using identical reaction parameters (catalyst 

concentration; total volume flow; residence time). But the efforts during operation and 

construction for both setups are very different. For the integration of the batch-wise 

operated reactor into the continuous process, two buffer vessels in front of and after 

the RSBR had to be installed. During the operation, charging and discharging of the 

reactor has been done manually, which lead to a strict procedure and high effort for 

the operator. Regarding the operational effort, the continuous operated tubular 

reactor is exactly the opposite of the RSBR. In order to reduce the space required, 

the reactor tube was coiled up helically with a total length of 270 m. The construction 

was done in a way that it opens the possibility of changing the length of the reactor 

mailto:jokiel@mpi-magdeburg.mpg.de
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tube. This leads to a good flexibility when the reaction conditions have to be 

changed, e.g. due to varying quality of the raw materials, catalyst concentration 

changes or variation of the reaction temperature. 

 
 

Figure 1. Left: Simplified process flowsheet with the two reactor concepts (HCTR, RSBR);  
right: C13-aldehyde yield over time obtained with the RSBR-CSTR-setup [3]  

Conclusions 
Both reactor concepts show almost the same performance for the 

hydroformylation of long-chain alkenes, but feature quite different efforts in terms of 

operation and construction. The coiled tubular reactor is much easier to operate, 

because it runs continuously, whereas the RSBR is much more challenging to 

operate. However, the latter is much more flexible with respect to the reaction 

parameters that can be changed from batch to batch. In the end, the decision for or 

against a certain reactor system will be guided mainly by aspects of plant flexibility 

and the automation effort.  
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DIRECT SYNTHESIS OF DIMETHYL ETHER (DME) FROM CO/CO2 IN 
A MEMBRANE REACTOR  

Rodriguez-Vega P., Ateka A., Aguayo A.T., Bilbao J. 
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Dimethyl Ether (DME) has a great interest as domestic fuel (similar vapor 

pressure to liquified gases) and automotive fuel (high cetane number), as well as raw 

material for the production of H2 (through steam reforming) and olefins (substituing 

methanol). Direct synthesis of DME on a bifunctional catalyst shows an important 

thermodynamic advantage in comparison to the methanol synthesis and its 

dehydration towards DME in two-steps. Due to the use of a single reactor for both 

reactions, the methanol synthesis equilibrium is displaced [1]. This lower 

thermodynamic limitation justifies that the direct DME synthesis is suitable for the 

conversion of CO2 on a large scale, co-fed with syngas [2]. Simulation studies of a 

packed bed membrane reactor (PBMR) with different sweeping strategies have been 

performed, analyzing the effect of H2O removal from the reaction medium regarding 

the DME production and CO2 valorization enhancement compared to a fixed bed 

reactor (PBR) [3, 4]. Although these simulation results are encouraging, since using a 

PBMR both DME production and CO2 valorization are improved, is key to synthesize 

a H2O perm-selective membrane and stable under the reaction conditions (high 

temperature and pressure) required in this process [5]. 

Based on the simulation results, in this experimental work, an original reaction 

system with a PBMR is designed and installed, in order to carry out reaction runs and 

compare the DME yield and CO2 conversion with a PBR. Figure 1a shows a PBMR 

operation scheme. The catalyst used is CuO-ZnO-ZrO2 / SAPO-11 and the external 

wall of the catalytic bed is a LTA zeolite membrane, selected among other 

microporous zeolites such as MOR or SOD. This type of microporous zeolite is 

hydrothermally stable and its H2O permeance under 30 bar and 300 °C is  

1.0910–3 mol·m–2·s–1·Pa–1. The reaction runs were carried out under the following 

reaction conditions: Feed gas, H2+CO+CO2; CO2/(CO+CO2) molar ratio, 0,0.5 and 1; 

H2/(CO+CO2) ratio in the feed, 3; temperature, 275, 300 and 325 °C; pressure, 

30 bar; space time, 10 gcath (molc)–1. The sweeping gas flow on the permeate side in 
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co-current mode is 60 ml·min–1 with the same feed concentration. In Figure 1b DME 

yields obtained with a PBR and PBMR are compared at different temperatures and 

CO2/(CO+CO2) molar ratios in the feed between 0 and 1. It can be observed that the 

DME yield is significantly higher with the PBMR for all the different studied 

conditions. Moreover, it has been determined that the conversion of CO2 is also 

greater with the PBMR (results not shown). The advantage of the PBMR for this 

purpose (valorization of CO2) is higher increasing the CO2 content in the feed. These 

results are encouraging in terms of its industrial scale-up substituing the conventional 

PBR for the PBMR and, besides, permit the evaluation of subsequent studies like 

sweeping strategies and reaction conditions optimization. 

 
Figure 1. a) Operation scheme of the PBMR. b) Experimental comparison between the DME yields 

with a PBR and a PBMR 
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INTENSIFIED DME PRODUCTION FROM SYNTHESIS GAS WITH CO2 
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In recent years production of clean fuels alternative to crude oil-based gasoline, 

diesel and LPG has been drawing increasing attention. Among such fuels, Dimethyl 

Ether (DME) is considered as a strong candidate for replacing their conventional 

counterparts in the near future due to its attractive properties such as easy 

transportation and handling, and pollutant (i.e. CO, NOx) free combustion 

characteristics. DME production involves exothermic equilibrium reactions, namely 

synthesis gas-to-methanol conversion and subsequent dehydration of methanol, 

which are commercially carried out indirectly, i.e. in two sequential packed-bed 

reactors involving CuO-ZnO-Al2O3 and a solid acid such as -Al2O3 as catalysts, 

respectively. In the direct synthesis approach, however, reactions run within the 

same reactor on a bed composed of either a physical mixture of the synthesis and 

dehydration catalysts or of a single, hybrid catalyst in which active phases for 

synthesis and dehydration reactions exist on the same support. Success of the direct 

synthesis approach, which offers significant reductions in capital and operating 

expenses and suppresses the limiting impacts of thermodynamic phenomena, 

depends strongly on facile removal of the heat released by synthesis and 

dehydration of methanol from the reaction medium. In this respect, wall-coated 

microchannel reactors come into play with their heat transfer rates that are ~102 

higher than those of their packed-bed counterparts. Moreover, ease of integration of 

cooling function allows microchannel units to operate under isothermal conditions 

allowing precise balance of the kinetic and thermodynamic effects. This study 

involves a quantitative parametric study for providing insight into the potential 

benefits of heat exchange (HEX) integrated microchannel reactor operation in single-

step DME synthesis from synthesis gas involving CO2, which further increases the 

detrimental effects of thermodynamics and calls for the requirement of precise 

temperature control of the catalyst bed. 

HEX integrated microchannel reactor concept [1] consists of stainless-steel walls 

separating cooling and reaction channels in which coolant (air) and reaction mixture 

are fed counter-currently with the same velocity and pressure of 1.17×10–1 m/s at  
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CO2 CONVERSION ENHANCEMENT IN A PERIODICALLY 
OPERATED SABATIER REACTOR: NONLINEAR FREQUENCY 

RESPONSE ANALYSIS AND SIMULATION-BASED STUDY 

Currie R.1, Nikolic D.2, Petkovska M.2, David S.A. Simakov1 
1Department of Chemical Engineering, University of Waterloo,  

Waterloo, ON N2L 3G1, Canada, dsimakov@uwaterloo.ca 
2University of Belgrade, Belgrade, Serbia 

The increasing levels of global CO2 emissions has prompted research in utilizing 

CO2 as a feedstock for generating synthetic fuels and chemical [1]. The current 

industrial usage of CO2 is limited to processes such as synthesis of urea, salicylic 

acid and polycarbonates. Conversion of CO2 into synthetic CH4 (the Sabatier 

reaction, CO2 + 4H2 = CH4 + 2H2O, normally accompanied by reverse water gas shift 

and CO methanation), has recently gained increasing interest as a technologically 

advantageous route for CO2 utilization [1]. Microchannel, monolith, three-phase 

slurry, fluidized bed, and packed bed reactors were suggested as design solutions [2, 

3]. Thermal management remains one of the main problems, as the overall process 

is highly exothermic requiring efficient heat removal to drive the CH4 formation and, 

importantly, to prevent catalyst deactivation [2, 3]. It is of crucial importance therefore 

to increase the CO2 conversion at low temperatures. Herein, we demonstrate the use 

of the Nonlinear Frequency Response (NFR) technique to predict the CO2 conversion 

enhancement induced by periodic operation. 

The nonlinear frequency response (NFR) method is an approximate, analytical 

method, mathematically based on Volterra series and generalized Fourier transform, 

which uses the concept of higher order frequency response functions (FRFs) in order 

to predict whether, at which conditions, and to which extent, a reactor performance 

can be improved by periodic modulation of one or more input variables [4]. In this 

work the NFR method was applied to analyse the kinetic flow model of the Sabatier 

reaction described by a set of dimensionless material balances [5]: 

 

where ui is a dimensionless concentration (i stands for CO2, H2, CH4, CO, and H2O), 

f1-f3 are dimensionless reaction terms with stoichiometric coefficients 1-3, 1 and 2 

are normalized reaction rate constants, and Da stands for the Damköhler number. 
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A typical output from the NFR analysis is shown in Figure 1, where a substantial 

improvement in CO2 conversion obtained by the periodic modulation of the inlet flow 

rate is demonstrated. This improvement was validated by numerical simulations 

using a kinetic flow model described above, Figure 2. 

 

Figure 1. NFR analysis applied on the Sabatier 
reaction system: blue lines represent steady  

state conversions obtained with constant input 

Figure 2. Numerical simulations of the flow 
model, Eq. (4) with constant and modulated  

feed rate (same average feed flow rate) 

For the first time, we have demonstrated that the Nonlinear Frequency Response 

(NFR) analysis can be used to predict the enhancement of the conversion of CO2 in 

the Sabatier reaction at low temperatures [5]. Our findings are of great importance for 

advancing the field of the thermocatalytic CO2 conversion. 
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REACTOR IN CO2 HYDROGENATION 

Liying Lan, Anjie Wang, Yao Wang 
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High consumption of carbon-based energy causes significantly and continuously 

increasing of the atmospheric CO2 concentration, which results global warming and 

even leads to many other disasters [1]. As CO2 is a C1 resource available at low cost, 

chemical utilization of CO2 has attracted considerable interest [2]. However, relatively 

high temperature is needed to active CO2 because of its high kinetic stability, which is 

inefficient. A bigger drawback is the deactivation of the catalysts due to carbon 

deposition on the surface at high temperature [3]. Aiming at this problem, non-

thermal plasma technique is applied to CO2 hydrogenation in this work. Among 

various plasma, dielectric-barrier discharges (DBD) is most commonly used because 

the high-energy electrons generated have typical energies 1-10 eV, enough to break 

most chemical bonds [4]. The application of plasma could help active CO2 at low 

temperature, avoiding carbon deposition and enhancing stability of the catalysts. The 

DBD reactor is shown in Fig. 1. The high-field electrode is located at the central axis 

of the reactor tube with an 8 mm inner diameter and connected with plasma 

generator, choosing quartz as the discharge medium and surrounding the grounding 

electrode around the outer wall of the quartz tube, which has a 10 cm length 

discharge interval. 

In this study, incipient wetness impregnation method is used to prepare a series 

of metal catalysts precursor with ZSM-5 as the support (15 wt % metal loading). The 

catalyst precursor was packed in the discharge interval of the DBD reactor, 

pretreated in H2 plasma flowing in 80 ml/min for 40 min (input power = 12 W), and 

then switch the reaction gas to 1/3 CO2/H2 (input power = 14 W), reacting in-situ for 

3.5 h with the synergy of plasma. The product was monitored by gas 

chromatography. It is found that among various metals, Co and Ni/ZSM-5 get high 

selectivity of CH4 and even C2-C4 appears in the products. Co/ZSM-5 has the highest 

C2-C4 selectivity, which is 4.88 % (alkane) with 38.97 % CO2 conversion. By 

changing the cobalt catalyst supports, the C2-C4 selectivity also changes in such 

sequence: bulk Co>ZrO2>SiO2>ZSM-5>SAPO-34>Al2O3, among which, C2-C4 
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selectivity of bulk Co catalyst is 11.41 % (alkane : alkene = 2.29 : 9.12) with 39.37 % 

CO2 conversion. The yield of lower hydrocarbons is much higher than that produced 

by conventional methods [2].  

 
Fig. 1. Structure of DBD reactor 
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The CO2 methanation reaction is a promising process to combine CO2 

reutilization and energy storage. In fact, the CO2 recovered from atmosphere can be 

reacted with hydrogen produced by electrolysis with the excess energy to form 

methane. Methane can then be fed to the natural gas network or stored in the 

appropriate storage systems. The CO2 methanation is a strongly exothermic reaction 

(HR (298 K) = -165 kJ/mol) and is subject to thermodynamic equilibrium. In the 

industrial operation, where the gases are fed not diluted in the reactor, the heat 

management of the reaction is the key parameter for an efficient control of the 

reaction. In fact, the rate of reaction changes drastically with the axial coordinate of 

the reactor, according to temperature and advancement of the reaction. Ru/Al2O3 is 

the most active catalyst for this reaction and the only material which allows CO2 

conversion higher than 95 %. In our study, we applied the method of elementary 

process functions [1] to find the optimal reactor for the synthesis of methane from 

CO2 and H2. Using the kinetic model of Lunde et al. [2], it was possible to determine 

the optimal absolute reaction path in terms of conversion and temperature profiles. 

The results are shown in figure 1. In this phase, the results do not refer to any 

particular equipment, but only to the physical properties of the system. In the second 

step, the reaction is modeled taking into account also the properties of the technical 

system, introducing limitation to heat and mass transfer. Since the reaction has 

different requirements according to the advancement stage, it is not possible to 

efficiently approximate the optimal conditions with a single reactor. Three main zones 

with different requirements are present (figure 2): 
1. Preheating zone, where the reactant gas mixture must be quickly heated to 

the operation temperature in order to start the reaction; 

2. Cooled zone, where the cooling system is crucial to limit the hotspot 

temperature and remove the reaction heat; 
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3. Isothermal zone, where the temperature is kept at an appropriate value in 

order to complete the reaction.   

The third step of the reactor design concerns the development of a technical 

solution to approximate the heat requirements of the optimal reaction pathway. The 

proper heat and material fluxes have to be considered in order to define a technical 

solution capable of approximating the optimal path defined in the previous steps. 

According to the properties to optimize (e.g. residence time or maximal temperature), 

the fluxes to adjust for good reaction control are different. In this study, we defined 

and compare various reactor configurations in order to define the most suitable 

reactor for the CO2 methanation and achieve high conversion. The results obtained 

allow the design of an optimized reactor for integration in a PtG system, generating 

significant savings in terms of investment and operation costs. 

  
Figure 1. Absolute optimal temperature profile Figure 2. Optimal heat management of the 

reactor 
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One of the acute problems is the formation of a huge amount of oil refining waste 

(including oil production and storage waste) namely the need for their utilization. In 

general, oil-refining waste includes so-called oil sludge and acid tar. The main groups 

of components making up such wastes are petroleum products, water, mineral 

components and mechanical impurities. According to the existing statistical data, 

from 3 to 5 % of all oil produced in the world goes to the waste. More than 3 million 

tons of oil sludge and from 220 to 250 thousand tons of acid tar are produced 

annually in the Russian Federation. 

Problems of oil sludge utilization are associated with their high humidity (up to 

80 %) and ash content (up to 50 %). The utilization of acid tar containing significant 

amounts of sulfuric acid and oleum by direct combustion is not acceptable due to 

high SO2 emissions.  

This work demonstrates the possibility of using the combustion in the fluidized 

bed of catalyst as a method of oil waste utilization. The technology has successfully 

proved to be an effective tool for burning various fuels and waste with obtaining a 

thermal energy. A series of model oil sludge samples with a different oil/water ratio 

was prepared for the study. Also it was taken two industrial oil sludge of different 

origin (OS1 and OS2) formed during oil refining at the Ryazan oil refinery. OS1 – is a 

sample from the floating sludge collector, while OS2 – is a sludge from an oil trap. 

The composition of used sludge samples is shown in table 1. The combustion 

was carried out in the fluidized bed of spherical deep oxidation catalyst (CuCr2O4/ 

-Al2O3) with particles size of 1.2-1.4 mm. 
Table 1. Composition of oil sludge samples 

Oil Sludge Working mass 
moisture, W, % 

Ash content in working 
mass, А, % 

Petrolium content in 
working mass, % 

Model oil sludge 50.0-80.0 0 20.0-50.0 
OS1 80.5 0.6 18.9 
OS1 86.3 4.9 8.8 
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As a result, no any underburning products was found in the exhaust during the 

combustion of model mixtures and real oil sludge samples in the fluidized bed of 

catalyst at 700 °C. Moreover, the content of toxic substances such as NO, NO2, SO2 

in the waste gases was insignificant. At the same time the burnout degree of oil 

sludge at 700 °C was 99.6 % for OS1, 99.4 % for OS2, and 99.8 % for a model 

oil/water mixture. 

The data obtained as a result of the studies were used to calculate the conditions 

for the combustion of oil sludge in the fluidized bed of deep oxidation catalyst. 

Calculation of the heat balance has shown that during the OS1 sample combustion 

under the fluidized bed conditions additional heat will be released in the amount of 

505 kcal per 1 kg of the burned product. Therefore, it is necessary to ensure the 

removal of excess heat during OS1 combustion. In the case of OS2 combustion in 

order to provide a temperature regime of 700 °C additional fuel is necessary. 

Organization of OS1 and OS2 co-incineration allows us to create an autothermal 

regime without any additional fuel, with a weight ratio of OS1/OS2 = 0.46. This ratio 

corresponds to an average humidity of 80-85 % and a calorific value of 900-

1000 kcal/kg. 

Thus, the approach considered in the work compensates practically all the 

shortcomings of the existing methods for oil waste utilization, has significant 

advantages and has no direct analogues both in the Russian Federation and abroad. 
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Fast pyrolysis of biomass produces a liquid bio-oil (FPBO) [1] with yields up to 

75-80 wt. %, together with some residual char and a fuel gas. Bio-oils derived from 

different biomass streams are much more uniform compared to the original biomass 

resources and have typically 5-20 times higher volumetric energy density. Thus, they 

offer the potential to de-couple liquid fuel production (scale, time, and location) from 

its utilization [2]. FPBO are completely different from petroleum fuels with regard to 

both their physical properties and chemical composition [3]. Beside water, bio-oils are 

complex mixtures of hundreds of organic compounds that belong to acids, 

aldehydes, ketones, alcohols, esters, anhydrosugars, furans, phenols, catecols, 

guaiacols, syringols, vanillins, nitrogen containing compounds, as well as large 

molecular oligomers (holocellulose-derived anhydro-oligosaccharides and lignin-

derived oligomers) [4]. The modelling of each individual constituent of the bio-oil is 

not feasible, therefore these complex mixtures are characterized in terms of a limited 

number of representative chemical components (surrogate mixture). The challenge is 

to characterize both the chemical properties (gas combustion and liquid fuel craking 

leading to cenoshperes) and physical propeties (evaporation, atomization).  

Fundamental research activity is performed inside the Residue2Heat project [2], 

which aims at developing a concept for renewable residential heating using FPBO, to 

develop a proper surrogate mixture able to mimic the behaviour of the real bio-oil. A 

nine-component mixture (made of water, acetic acid,  ehylene glycol (EG), glycol 

aldehyde, vanillin, HMW-lignin, levoglucosan, 2,5-Dimethylfuran, oleic acid) has been 

defined and exeprimentally verified in comparison with the corresponding FPBO in 

single droplet experiments [5]. It also contains the heavy lignin component to 

represent the Heavy Molecular Mass (HMM) fraction of the FPBO and can be 

extended to include Pyrrole to model the Fuel-Nitrogen. Physico-chemical properties 

were defined to evaluate the evaporation behaviour of the FPBO and the combustion 
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characteristics. The comparison with experimental results showed that this surrogate 

is able to mimic the main chemical and physical characteristics of pyrolysis oils in 

terms of volatility, density, heating value, elemental and chemical compositions.  

The experimental analyses and kinetic model development were performed 

hyerarchically, starting form pure components (such as acetic acid and EG), then 

moving to their mixtures and finally the compelete surrogate. A kinetic mechanism 

able to describe the FPBO combustion is described in this work, toghether with the 

comparison with experimental data in both ideal reactors and in the single droplet 

experiments, which are modeled using a transient droplet multi-phase model which 

describes liquid heating, evaporation and combustion in the gas phase [6].  

The complex combustion features of FPBO droplets, suspended on a thin 

thermocouple in order to follow their thermal history, were studied in a single droplet 

combustion chamber by means of high speed shadowgraphs [5] to investgate droplet 

swelling and sputtering, as well as homogeneous and heterogeous combustion. 

The comparisons show that the model is able to reproduce the effect of the 

different volatility of FPBO components. This includes the effect of evaporation, 

cracking reactions, and reactivity in the gas-phase which control the formation of 

carbonaceous residue, the heat release rate, and the flame temperature. 

The kinetic model contains a revision of ethylene glycol, acetic acid, and a new 

vanillin kinetics. 
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Carbon nanotubes are one of the most studied materials of the last 25 years, but 

still one of the most attracting for investigation. Indeed, efforts of the last two decades 

did not completely revealed the mechanism of the carbon nanotube growth or 

provided technique to produce single-walled ones with controlled and single chirality. 

Nevertheless, implementation of the fluidized bed reactors facilitated industrial 

production of both single-walled and multi-walled carbon nanotubes resulting in more 

than 3 000 ton/year capacity. This might enhance the application of the nanotubes as 

substrates or as component of composite material. 

However, when considering electronics, not the scalability but the material 

properties play as barrier for wide application requiring carbon nanotubes of specific 

morphology, defectiveness, structural characteristics. Aerosol CVD synthesis of the 

single-walled carbon nanotubes – a specific case of floating catalyst with low volume 

concentration of catalytic particles – is one of the best techniques to control the 

characteristics of individual carbon nanotubes and the ratio and the morphology of 

the agglomerates providing the state-of-the-art devices – thin, transparent, and 

conductive electrodes, transistors etc. Although low yield of the carbon nanotubes 

from the reactor cross-section prohibits this approach to challenge fluidized beds in 

the field of composites, the aerosol CVD occupies specific and certain niche of 

flexible electronics, nanophotonics, nanoelectronics etc.  

In this work we examine the design of aerosol CVD reactor in terms of catalytic 

performance and carbon nanotube properties using a comprehensive set of the 

methods: the analysis of differential mobility of the aerosol particles, optical 

spectroscopy, scanning and transmission electron microscopy, Raman spectroscopy 

etc. Thorough kinetic analysis has allowed us to reveal fundamental aspects of the 

activation of the active component of the catalyst. 
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While aerosol CVD (floating catalyst) method has proven itself to provide versatile 

and tailorable source for the thin films, transfer of carbon nanotubes from gas phase 

to a substrate offers bonus opportunities for fine tuning. Here, we also discuss 

thermophoretic deposition of carbon nanotube aerosol – non-invasive approach for 

direct tangential transfer of aerosol structures under the temperature gradient 

providing, for example, films of extremely low thickness (sub-percolation surface 

concentration) on non-porous substrates. In the present work we systematically 

asses the influence of intrinsic properties of carbon nanotubes (length, morphology, 

diameter etc.) on the thin film performance with special attention to the origins and 

peculiarities of carbon nanotube behavior within the field of high temperature 

gradient. We considered theoretical description of the process taking place as most 

of existing concepts fail to predict the experimental results of the thermophoretic 

deposition of the carbon nanotubes. 

The results obtained allowed us to improve the performance and the morphology 

of the carbon nanotube thin films enhancing the development of the next generation 

devices. 
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Lignin is an abundant natural aromatic polymer, which provides structural 

strength to plant cell walls. Generally, it is burned as a low-value fuel. However, lignin 

being aromatic in nature might be a potential source for the production of mono-

aromatics (BTX type) and other value-added chemicals. Depolymerisation of lignin 

via fast pyrolysis is widely studied over a wide range of temperature and in different 

setups. Slow heating rates (in TGA) and online detection of volatiles (e.g. in  

Py-GC/MS), offers limited information about true primary products because a major 

fraction of the pyrolysis products are composed of large molecules and remain 

therefore undetected. The goal of current work is to investigate the primary products, 

underlying primary reactions and the behaviour of different inter-unit linkages  

(e.g. -O-4, -, -5) under minimal mass and heat transfer limitations. 

In this work, five different lignins were characterized for elemental composition, 

molecular weight distribution and bond types. Subsequently, their fast pyrolysis was 

carried out in a dedicated screen-heater reactor. In which, lignin is rapidly heated 

(>5000 °C s–1), formed products are quickly removed (~20 ms) from the hot 

pyrolyzing site by applying vacuum and are instantaneously quenched by using liquid 

nitrogen [1]. Analysis of obtained bio-oils is carried out by using GC-MS, GPC, and 

quantitative 2D NMR. A clear trend for the lumped product yields (bio-oil, solid 

residue, and non-condensable gases) as a function of lignins molecular weight (Mw) 

was observed. Additionally, a relation between molecular weights of lignins and 

molecular weights of bio-oils was measured see (Figure 1) which could be explained 

by a model including cracking and polymerization reactions and ejection/evaporation 

of fragments from the reaction zone. 



OP-II

Figure 1

The

us to tr

could b

linkage

and ch

with en

valorisa

Referen
[1] R.J.

I-9 

1. Mw of bio-

e quantitat

rack altera

be perform

es present 

emistry. W

ngineering

ation proce

nces 
.M. Westerho

-oils against 

ive 2D NM

ations occu

ed. Lastly,

in native 

We will pre

 models a

esses of lig

of, et. al., Re

lignin Mw as

MR of bio-o

urring, dur

, the pyroly

lignin, offe

sent a new

and will d

gnin. 

eact. Chem. E

166 

s a function o

oils (obtaine

ring fast py

ysis of mod

ered insigh

w data set

discuss the

Eng. 1(5), pp

of pressure (5

ed at 5 mb

yrolysis fro

del compo

hts into the

t on lignin 

e implicat

p. 555-566, 2

5 mbar and 1

bar and 100

om which a

ounds, repr

e interplay

pyrolysis, 

ions of th

2016. 

 
1000 mbar) a

00 mbar) e

a “Bond B

resenting d

y of mass 

interpret t

he results 

at 530 °C 

enabled 

Balance” 

different 

transfer 

he data 

for the 



OP-III-10 

167 
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Brigita Hočevar1,2, Matej Huš1, Miha Grilc1, Blaž Likozar1 
1Department of Catalysis and Chemical Reaction Engineering,  

National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia 
2Faculty of Chemistry and Chemical Technology, University Ljubljana,  

Večna pot 113, 1000 Ljubljana, Slovenia 

Environmental concerns are pushing chemical industry towards the search for 

new and cleaner chemical production routes. One of the most environmentally 

harmful processes is the conventional oil-based production of adipic acid, where a lot 

of NOx is emitted into the atmosphere. Substituting oil with biomass would bring 

about a tremendous improvement. Cellulose, especially waste cellulose, is one of the 

most promising types of biomass, from which a wide range of platform chemicals can 

be made. For instance, its monomer glucose can be catalytically converted into 

adipic acid. 

Glucose can be first oxidized into glucaric acid and then, under high hydrogen 

pressure, deoxygenated into adipic acid. Our work focused on the last part, i.e. 

hydrodeoxygenation (HDO) of mucic acid, which is an optical isomer of glucaric acid. 

The objective was to develop a reaction mechanism for HDO of mucic acid over 

different metal catalysts on diverse supports. Experiments were performed in a 

250 mL high-pressure stainless steel batch autoclave, operated as a three-phase 

system. Mucic acid was dissolved in water; solid catalyst particles (diameter < 

100 m) were added afterwards. After purging the system with an inert gas, 5 MPa of 

hydrogen was introduced into the autoclave. We heated up the whole system to the 

desired temperature with a heating ramp of 5 K min–1. The total reaction time was 

180 min. During the reaction, liquid samples were taken and analyzed on HPLC and 

GCMS. For GCMS analyses intermediates and products were extracted into diethyl 

ether and treated with a TMS derivatization reagent.  

Based on experimental results, a reaction scheme was proposed, as showed in 

Figure 1. In the first step, hydroxyl (–OH) groups are gradually removed as double 

bonds form, which are then quickly hydrogenated to yield sp3 bonds. Cyclic products 

can form during the HDO and, if using highly efficient catalyst at high temperature, 

complete deoxygenation leading to fully saturated hydrocarbons is observed. Several 



OP-III-10 

168 

side products due to C-C bond splitting were detected, such as pentanoic acid, 

hydroxyl pentanoic acid, pentenoic acid and, levulinic acid. 

 
Figure1. Propsed reaction pathway for catalytic HDO of mucic acid 

The desired product of HDO of mucic acid is adipic acid. After catalyst screening, 

all effort was directed to improving selectivity and obtaining higher yields. Reaction 

conditions, such as temperature, pressure and solvent, were varied in the process.  

Experimental work was supported with first-principles (DFT) calculations. For the 

tested catalysts, adsorption energies and reaction energies of particular reaction 

steps were calculated. In conjunction with experimental data, these findings were 

used to construct BEP relationships and volcano plots, justifying the ultimate choice 

of the catalyst. 
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MULTI-PHASE, MULTI-SPECIES MODEL FOR THE CONVERSION OF 
RECYCLED PLASTIC TO DIESEL 

Klaus Möller, Mpumelelo Mhlongo, Rowan Dalton,  
Nicky Embling, Ramsay Collins 

Process Modelling and Optimisation Group, Chemical Engineering,  
University of Cape Town, Cape Town, South Africa, klaus.moller@uct.ac.za 

Plastic recycling is carried out globally to reduce the volume of waste plastics 

produced and the need for landfill. The conversion of waste plastics such as 

polyethylene into useful fuels such as diesel is a viable recycle alternative. 

Literature[1] has measured the degradation of plastic as well as well established 

chemistry of the idealised radical degradation mechanisms. However, a practical 

plastic to diesel reactor system operates in a two phase mode, in which the long 

hydrocrabons are liquified at high temperature, thermally cracked and the lighter 

species evaporate out of the mixture to be recovered by distillation with or without 

heavy cut recycle. The dynamics of the liquid phase and thus also the reactor 

performance and the kinetic behaviour is strongly influenced by these factors. 

Literature [1] has failed to capture these important design features and thus rigorous 

design of such systems is not yet feasible. Moreover, in order for the kinetic model to 

fully represent the reaction system and be used with rigorous phase equilibrium 

calculations, the elementary kinetics must exceed carbon numbers of 4000, which 

yields 100000’s of chemical species and is completely intractable for the design task. 

Thus there is a need for a progressive lumping scheme that retains the kinetic 

features, uses real chemical species and thus also real VLE calculations and has a 

limited number of species yield a tractable reactor model. This paper evaluates the 

ability of the progressive lumping scheme to represent the elementary kinetics as 

well as its impact on the computational requirements. The model prediction is 

validated against experimental data [2]. 

The model is developed in two stages. In stage one, the ratios of the kinetic 

constants of the progressive lumping kinetic scheme which uses the following 

groups, L1: [C1,C2,...C100], L2: [C102,C105,...C498], L3: [C504,C513,...C1998], are 

tuned to an elementary kinetic scheme over a range of conversions with fast single 

phase calculations. Special development is needed at group bounsaries to ensure 
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molar balances are conserved. Figure 1 

shows that the lumped kinetic scheme 

precicely represents the elementary reaction 

scheme. 

The second stage models the pyrolysis 

reactor as a multi-phase continuous stirred 

tank reactor (CSTR), with embedded vapour 

liquid equilibrium using the Peng-Robinson 

equation of state, and only a vapour stream 

leaving. The production of only a vapour 

product stream provides severe limitations to 

the operational flexibility of the process.  

Figure 2 shows that temperature has a 

strong influence on the product distribution 

while figure 3 shows that the present model 

can represent experimental data very well. 

A process model was developed with the 

addition of separation and recycle to the 

reactor model, and has been used to study 

the operating strategies and develop design 

criteria for the operation of such a process. 
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CATALYTIC DEHYDROGENATION COUPLING OF  
ALCOHOLS TO ESTERS: MECHANISM AND  

KINETIC STUDIES FOR MODELLING PURPOSES  

Léo Violet*, Alexis Mifleur, Laurent Vanoye, Alain Favre-Réguillon,  
Régis Philippe1, Pascal Fongarlang 

Laboratoire de génie des procédés catalytiques (LGPC),  
UMR 5285 CNRS – CPE Lyon – Université Lyon 1, * lev@lgpc.cpe.fr 

Fatty esters from bio-based feedstock are an important source of heavy 

molecules in green chemistry. There valorization is a daily challenge in economies 

that wish decreased there dependency on fossil sources. One of the main outlet is 

the production of wax ester (WE) for cosmetic applications. Such products can be 

obtained by classical esterification reactions between fatty acid derivatives and fatty 

alcohols with the known limitations for those reactions. An alternative for the 

synthesis of symmetric WE is the homo-coupling of the corresponding alcohol. In the 

last decade, contributions in the field of Acceptorless Alcohol Dehydrogenation (AAD) 

for the preparation of ester significantly grew. Several groups described novel 

metallic complexes with impressive catalytic activities usually based on ruthenium 

with non-innocent polydentate ligands [1], [2]. 

The first works on our project led to the optimization of a promising catalytic 

system based on ruthenium and PNP ligands (Ru-MACHO) and tested on n-butanol 

and several other heavier alcohols [3]. The mechanistic aspects were mainly studied 

through the synthesis of plausible intermediates and there spectroscopic 

characterizations as well as control experiments. The current work has proposed in a 

first part to collect kinetic and thermodynamic data to (1) clarify our understanding of 

the mechanism (2) find an accurate kinetic model for modelling purposes. The 

second part has been to study several scaling-up strategy through chemical reactor 

simulation and comparison : (1) classical batch stirred tank (2) inovative continuous 

membrane milireactor. 

For the kinetic studies, experiments have been performed in a Batch stirred tank 

reactor under various conditions. The mixture composition has been monitored by 

gas chromatography (GC) and/or by in situ IR analysis post treated with multivariate 

method (PLS regression). The H2 gas produced during the reaction has been 

followed by online gas chromatography. Besides all the advantages of online system, 

IR have allowed us to report the observation of aldehyde, a key intermediate. 
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MAGNETICALLY SEPARABLE BIOCATALYSTS BASED ON 
IMMOBILIZED ENZYMES  

Aleksandrina Sulman1, Valentina Matveeva1,2, Natalia Lakina1,  
Ekaterina Golicova1, Mikhail Sulman1, Boris Tikhonov1,  

Alexander Sidorov1, Esther Sulman1 
1Tver State Technical University, Department of Biotechnology and Chemistry,  

22 A. Nikitina St, 170026, Tver, Russia 
2Tver State University, Regional Technological Center,  

Zhelyabova Str., 33, 170100, Tver, Russia  

One of the most significant catalytic processes of fine organic synthesis that 

serves for synthetic biologically active compounds production is selective oxidation 

reaction [1, 2]. The researchers’ efforts, nowadays, are focused on the increase in 

the selectivity and stability of the catalytic systems. In this regard, the development of 

heterogeneous biocatalysts in particular magnetically separable catalysts is the most 

important [1-3]. Catalytically active sites formed on the surface of such catalysts 

combine the advantages of enzymatic (selectivity and activity) and 

heterogeneous/magnetically separable (easy separation and modification possibility) 

catalysts. Depending on the characteristics of enzyme, support, and modifier the 

catalytic properties of such systems can be varied.  

In the present work, the innovative method of D-gluconic acid production by 

enzymatic oxidation method using biocatalysts primary magnetically separable 

catalysts was developed. These methods can be considered an ecologically friendly 

alternative to the existing methods with a high yield of the target product [4, 5].  

The direct synthesis of magnetic particles of Fe3O4 by the hydrothermal method 

is proposed [6, 7]. The synthesis conditions variation in the suggested method and 

the combination of Fe+2 and Fe+3 salts will allow controlling the morphology and 

obtaining nanoparticles with the extended surface which will be optimal for the 

functionalization and further enzyme immobilization.  

The biocatalysts were synthesized via the immobilization of enzymes of 

oxidoreductase group (glucose oxidase EC 1.1.3.4) on inorganic supports including 

magnetically separable particles. The effective influence of amino-containing 

modifiers and linking agents on enzyme immobilization process was studied. By 

changing the ratio of support/modifier/linking agent/enzyme it is possible to vary the 

catalytic properties of biocatalysts.  
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In the present work, we developed novel magnetically recoverable catalysts using 

magnetite nanoclusters, coated with silica modified with amino groups. The glucose 

oxidase covalent attachment has been carried out via the reaction with a glutaric 

dialdehyde. Exceptional catalytic activity and stability of the catalyst developed to 

make it promising for practical applications. The characterization of the obtained 

Fe3O4 magnetic particle samples and biocatalysts by physicochemical methods: 

transmission electron microscopy, X-Ray photoelectron spectroscopy, X-Ray 

diffraction, FTIR spectroscopy and low-temperature nitrogen physisorption was 

studied.  
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CONTINUOUS CATALYTIC AEROBIC OXIDATION OF  
BENZYL ALCOHOL IN A SLURRY TUBE-IN-TUBE REACTOR  

USING Au-Pd/TiO2 CATALYST 

Baldassarre Venezia1, Peter Ellis2, Asterios Gavriilidis1 
1Department of Chemical Engineering, University College London, Torrington Place, 

London WC1E 7JE, UK, a.gavriilidis@ucl.ac.uk 
2Johnson Matthey Technology Centre, Blount’s Court, Sonning Common, Reading, 

RG4 9NH, United Kingdom 

The need for large catalyst particles in order to reduce pressure drops in packed-

bed reactors, inevitably leads to a reduction in the catalyst efficiency. Additionally, 

homogeneous temperature conditions are not always guaranteed in these reactors. 

Liquid-solid slurry reactors can overcome these problems by allowing the use of 

small particles and enhancing the mixing properties between the catalyst and the 

liquid reactants [1]. In this work, a new reactor configuration that combines the 

advantages of using a slurry tube reactor with a high recycle ratio and a tubular 

membrane contactor (Teflon AF-2400) for safe oxygen delivery has been realized. A 

slurry made of Au-Pd/TiO2 and benzyl alcohol flows inside the tubular membrane, 

while oxygen gas is stagnant and pressurised outside the membrane and inside a 

steel tube. The slurry catalyst mixture circulates inside a loop to which the tube-in-

tube reactor is connected and the products are continuously withdrawn by means of 

a stainless steel crossflow filter, designed for this application. A schematic of the 

setup is shown in Figure 1. 

 
Figure 1. Schematic illustration of the slurry reactor with a tube-in-tube membrane for the oxygen 

delivery. The reactor and the crossflow filter are immersed in a bath filled with  
a heat transfer fluid at a constant temperature 
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15 mg of 1 % (Au-Pd)/TiO2 catalyst powder was mixed with 3 mL of pure benzyl 

alcohol (Sigma Aldrich) and loaded into the loop (0.75 mL). The first campaign was 

performed by varying the external oxygen pressure. The recycle flowrate was set to 

10 mL/min, the liquid pressure to 7.5 barg, the heating fluid temperature was kept 

constant to 120 °C and the inlet flowrate was 25 L/min. Conversion and product 

selectivity are reported in Figure 2.  
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Figure 2. Benzyl alcohol conversion and product selectivity at different gauge pressures. Temperature 

of the heating fluid was 120 °C, liquid pressure 7.5 barg, recycle flowrate equal to 10 mL/min, inlet 
flowrate 25 L/min, catalyst concentration 5 g/L, catalyst contact time: 9.2 gcat*s/galcohol 

Increasing pressure has the effect of increasing the oxygen concentration, hence 

favouring the direct oxidation of benzyl alcohol to benzaldehyde, as highlighted by 

the increase in conversion. A comparison is made between this Slurry Reactor and a 

Tube-in-Tube Membrane Microreactor where the same catalyst was packed in the 

tubular Teflon AF-2400 membrane without liquid recycle [2]. At the same operating 

conditions, the Slurry Reactor outperforms the Tube-in-Tube Membrane Microreactor 

by achieving similar conversion and higher benzaldehyde selectivity at 6 barg O2 

pressure, but with approx. 12 times less catalyst contact time and 5 times less 

catalyst amount. A complete characterization of the process is made by performing 

further reaction tests aiming at understanding the role of the length of the tube-in-

tube reactor, the inlet flowrate and the reaction temperature. 
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PROCESS INTENSIFICATION OF ENZYME CATALYSED KINETIC 
RESOLUTION OF 1-PHENYLETHANOL IN A SPINNING  

MESH DISC REACTOR 
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Claverton Down, Bath BA2 7AY, UK,* eaep20@bath.ac.uk 

2Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK 

 
Biotransformation of racemates into enantiomers using enzymes is an attractive 

option owing to the high regio, enantioselectivity and a safer alternative to chemical 

synthesis [1]. One such important reaction is the resolution of 1-phenylethanol via 

acylation using a suitable acyl donor and catalysed by lipase (Fig 1).  

 
Fig. 1. Kinetic resolution of 1-phenylethanol with vinyl acetate as the acyl donor, catalysed by lipase 

It is an important reaction as the chiral derivatives of phenylethanol are often 

used as starting materials in the pharmaceutical and natural products industries [2]. 

However, current issues with this reaction are long reaction times, low recoverability 

of the enzymes, solvent compatibility and process scale-up [3].  

The spinning mesh disc reactor (SMDR) is a novel reactor built on a similar 

concept to the SDR, but additionally houses a cloth with immobilised catalyst resting 

on the disc surface allowing the centrifugal force of the spinning disc to create a thin 

film over and within the cloth. This improves mixing and mass transfer within the film, 

accelerating the reaction, as well as protecting the catalysts from the shear forces 

associated with the spinning disc [4]. An additional advantage with the SMDR is the 

use of immobilized catalysts which enables easy catalyst separation, recovery and 

reuse. The SMDR has so far only been demonstrated for two reaction systems, 

enzymatic hydrolysis of tributyrin (water-enzyme) [4] and copper catalysed Henry 

reaction (organic solvent-metal catalyst) [5]. One of the aims of this research is 

therefore, for the first time, to achieve process intensification of enzyme catalysed 

synthesis in organic solvents. This will also further demonstrate the versatility of the 

SMDR. 
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Lipase immobilisation was carried out by soaking the PEI modified cloth in lipase 

solution followed by cross-linking with glutaraldehyde [6]. The presence of lipase was 

confirmed by FTIR, SEM, EDX and XPS. The solvent effects were studied in batch 

and then the conversion and enantiomeric excess was optimised in the SMDR for 

different flowrates and spinning speeds for both free and immobilized lipase and 

compared to batch. Conversion in batch (using both free and immobilized lipase) and 

in the SMDR showed similar conversion of ~45 % (maximum possible conversion 

being 50 %) and enantiomeric excess (ee) of 90 %. However, the reaction rate in the 

SMDR was higher compared to that in batch demonstrating proof of concept and 

achieving process intensification. Increasing the number of cloths, doubled the initial 

reaction rate, although the conversion after 5 h remained the same and 83 % of the 

original lipase activity was retained after three consecutive runs. 

These results show the versatility and the applicability of the SMDR and is the 

first demonstration of novel reactor design for organic enzymatic synthesis. The 

SMDR thus shows potential to be extended to other enzyme catalysed systems to 

further improve reaction selectivity and provide a pathway towards scale-up and the 

continuous processing of organic enzymatic synthesis in the fine chemicals and 

pharmaceutical industry. 
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THE SENSITIZING EFFECTS OF NO2 AND NO ON METHANE LOW 
TEMPERATURE OXIDATION IN A JET STIRRED REACTOR 
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1Laboratoire Réactions et Génie des Procédés, CNRS-Université de Lorraine,  
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2Aragón Institute of Engineering Research (I3A), Department of Chemical and 
Environmental Engineering, University of Zaragoza, Mariano Esquillor s/n,  

50018 Zaragoza, Spain 
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Combustion et de l’Atmosphère, F59000 Lille, France 
4Department of Chemistry, Materials and Chemical Engineering “G. Natta”, 

Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy 

The mutual effects of CH4/NOx have attracted considerable attention in the past 

decade. Although a large number of experimental reports concerning the 

hydrocarbon-NOx interactions in ideal reactors are available [1-4], the sensitizing 

effects of NO2 on methane low-temperature oxidation in a jet-stirred reactor has not 

been performed yet. Additionally, the knowledge of some notable intermediate 

nitrogen species (such as HONO) is not comprehensively understood. In this context, 

the oxidation of neat methane and methane doped with NO2 or NO in argon at 

107 kPa and temperatures between 650-1200 K with a fixed residence time of 1.5 s 

has been investigated in a jet-stirred reactor for different equivalence ratios (), 

ranging from fuel-lean to fuel-rich conditions using four different diagnostics: gas 

chromatography (GC), chemiluminescence NOx analyzer, continuous wave cavity 

ring-down spectroscopy (cw-CRDS) and Fourier transform infrared spectroscopy 

(FTIR). In case of the oxidation of neat methane, the initial oxidation temperature was 

above 1025 K while it shifted to 825 K with the addition of NO2 or NO, independently 

of equivalence ratio. This indicates that the added NO2 or NO highly promotes 

methane oxidation. The consumption rate of methane exhibits the similar trend with 

the presence of both NO2 and NO. The search for HONO and CH3NO2 species has 

been attempted. A detailed kinetic mechanism, derived from POLIMI kinetic 

framework, is used to interpret the experimental data. The agreement between the 

experimental data and model predictions is very satisfactory. Reaction rate and 

sensitivity analysis were conducted to illustrate the kinetic regimes. The fact that the 

addition of NO or NO2 seems to have similar effects on promoting methane oxidation 

can be explained by the fact that both species are involved in a reaction cycle 
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INNOVATIVE HYBRID MEMBRANE-CATALYTIC TECHNOLOGY FOR 
SYNGAS, HYDROGEN AND VALUABLE MONOMERS PRODUCTION 

Alexey Fedotov1, Valeriy Uvarov2, Mark Tsodikov1 
1A.V. Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky prosp. 29, 

Moscow, 119991, Russian Federation, alexey.fedotov@ips.ac.ru 
2The Institute of Structural Macrokinetics, RAS, Chernogolovka, Moscow Region, 

Russian Federation 

Original porous ceramic catalytic converters have been developed. These 

converters can be used for high-rate dry and steam reforming processes of C1-C5 

hydrocarbons, ethanol, dimethyl ether (DME) and fermentation products into 

synthesis gas as well as for steam reforming of carbon monoxide to produce purified 

hydrogen. The converter is the so-called ensemble of nanoreactors. It is prepared by 

self-spreading high-temperature synthesis (SHS) from a mixture of highly dispersed 

metal and oxide powders. The converter has an average pore diameter 1-3 m and a 

porosity ~60 %.  

It was shown that chemical reactions in channels of the converter are much more 

intense than in a traditional reactor with a fixed bed of the bulk catalyst. This is 

probably the result of improved mass and heat exchange. Thus, the synergetic effect 

of increasing catalytic activity was found in dry reforming of methane (DRM) on the 

converter with composition Ni(Al)-Co3O4 [45(5)-50 mas. %]. As a result the synthesis 

gas (H2/CO = 1) specific productivity was 85000 l/h·dm3, while this value for the 

granular catalyst of the same composition was approximately 5 times lower [1,2]. 

An original hybrid membrane-catalytic reactor (HMCR) for the ultrapure hydrogen 

co-production has been developed. In HMCR the catalytic converter is integrated 

with a hydrogen-selective palladium-containing membrane [3]. 

It was found that during the steam reforming of dimethyl ether into synthesis gas 

using a porous ceramic Ni–Co-containing membrane catalytic converter, an 

increased hydrogen yield with H2/CO = 15–20 is reached at T = 450–500 °C. 

Reforming in a hybrid membrane reactor with a Pd–containing alloy membrane 

integrated into the reaction volume provides recovery of ultrapure hydrogen up to 

50 % at a temperature of 500–700 °C. 

An original two-stage process for production of 1,3-butadiene and isoprene from 

n-butanol and isoamyl alcohol has been developed. The process is carried out 

continuously and consistently. On the first stage, dehydration of the alcohols in the 
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corresponding olefins is carried out and on the second stage, these olefins 

dehydrogenate into dienes. 

It was shown that complete dehydration of alcohols to olefins, with almost 100 % 

selectivity occurs on SHS-synthesized sample of -Al2O3 at 300 °C. It is 50 degrees 

lower than on industrial pellets of gamma-oxide. 

It was found that the catalyst based on -Al2O3 + K, Ce, Cr (5 %) + Fe (5 %) is 

formed as islet coatings on the inner surface of the converter pores. It allows the 

production of diene hydrocarbons, such as 1,3-butadiene and isoprene with 

equivalent industrial yields per pass at 637 °C. At the same time, during 20 hours of 

the experiment, a decrease in the catalytic activity of the system was not observed, in 

contrast to industrial solutions where the regeneration stage is carried out every 8-15 

minutes. As a result, with increased selectivity it became possible to increase the 

yield and productivity of butadiene and isoprene by ~2 times. 

The use of the original HMCR with selective removal of hydrogen from the 

reaction zone made it possible to increase the productivity of 1,3-butadiene 1,6 to 

2,2 l/(h·gact.comp.). The rate of ultra-pure hydrogen extraction was ~16 % in the 

absence of dilution with water of the initial butylene fraction. This is about 30 % 

compared to the traditional process with a bulk layer of catalyst. The use of the 

HMCR also opens the possibility for simultaneous production of ultrapure hydrogen, 

which is a demanded raw material for organic synthesis, as well as environmentally 

safe fuel for hydrogen internal combustion engines and fuel cells. 
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STRUCTURE-DEPENDENT MULTISCALE MODELLING OF 
CATALYTIC PROCESSES: AN APPLICATION TO THE CATALYTIC 

PARTIAL OXIDATION OF METHANE ON RHODIUM  

Raffaele Cheula1, Aloysius Soon2, Matteo Maestri1 
1Laboratory of Catalysis and Catalytic Processes, Dpt. Energia, Politecnico di Milano, 

via La Masa 34, Milano, Italy, e-mail: matteo.maestri@polimi.it 
2Dpt. of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro 

Seodaemun-gu, Seoul, Republic of Korea 

Introduction. Several experimental studies clearly demonstrated the existence of 
strong interactions between the structure and the activity in heterogeneous catalysis 
[1]. Moreover, the catalyst structure is strongly dependent on the reaction 
environment. As a result, catalyst materials in heterogeneous catalytic reactors are 
intrinsically dynamic systems: they change their morphology in response to the 
conditions of the reaction environment, which in turn affects the reactivity [2]. 
Microkinetic modelling is a key tool for the investigation of the behavior of complex 
chemical reactions, making it suitable for the fundamental understanding of the 
structure-activity relations of catalytic processes. However, state-of-the-art 
microkinetic models in heterogeneous catalysis lack in the description of the catalyst 
structure by relying on an abstract and “structureless” concept of catalyst active site. 
This assumption enables the study of the macroscopic kinetic behavior of reacting 
systems [3], but it does not allow to reach an atomistic understanding of the 
structure-activity relations. As a consequence, the incorporation of the catalyst 
structure in microkinetic modelling becomes of paramount importance for the study of 
the structure-activity relations, which is widely recognized as one of the main 
progress area in modelling of catalytic processes towards the design of catalysts and 
reactors based on functional understanding rather than empirical testing. In this 
contribution we couple microkinetic modelling and ab initio thermodynamics to 
characterize the morphology of catalyst nanoparticles inside a reactor for the catalytic 
partial oxidation of CH4 on Rh/Al2O3. 

Methods. By multiscale reactor modelling we evaluate the gaseous composition 
profiles inside a chemical reactor and we identify the most abundant reaction 
intermediates (MARIs) on the catalyst surfaces. With density functional theory and ab 
initio thermodynamics we calculate the most stable bulk and surface structures of the 
catalyst at different conditions of the reaction environment, considering the presence 
of the MARIs in equilibrium with their reservoirs in the gas phase. By Wulff-Kaishew 
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PROGNOSTIC MODELLING OF DESTRUCTIVE PROCESSES OF 
HYDROCARBON FEEDSTOCK CONVERSION 

Belinskaya N.S.1, Ivanchina E.D.1, Frantsina E.V.1, Lutsenko A.S.1,  
Nazarova G.Y.1, Glik P.A.1, Dementyev A.Y.2 

1Tomsk Polytechnic University, Tomsk, Russia, belinskaya@tpu.ru 
2PJSC “KINEF”, Tomsk, Russia 

The process of middle distillates catalytic dewaxing, combined with hydrotreating, 

is currently the most up-to-date way to produce Euro-5 diesel fuel, which is capable 

of operating at low temperatures up to –50 °C. Hydrocracking process allows treating 

heavy heavy petroleum fractions into high quality components of gasoline and low-

freezing low-sulfur diesel fuels along with increasing in the depth of petroleum 

refining. The aim of this work is modelling of hydrodewaing and hydrocracking 

processes using new approach taking into account intragroup distribution of 

hydrocarbon reactivity. According to this approach mathematical description of 

destructive processes of hydrodewaxing and hydrocracking, which pass in the 

cascade of reactors, rpresents the system of integro-differential equations as follows: 
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 ,iC x  ,  mk x  – distribution functions of hydrocarbon concentrations and reaction 

constant rates;  ,m x x   – distribution functions of probability of bond breacking in 

paraffin hydrocracking;   – contact time;  T   – temperature change in the process;  

m
pC  – heat capacity of the mixture; jH  – average enthalpy of the certain reaction;  

x  – number of carbon atoms in the molecule of hydrocarbon; i  – number of 

hydrocarbon groups (parafins, iso-parafins, cycloparaffins, aromatics, etc.). 

The first component in mass balance equation describes reactions wthout 

hydrogen; the second component describes reactions with hydrogen; the third 

component describes reaction of paraffin hydrocracking. 

Distribution function  ,m x x  , which characterize propability of formation with 

shorter chain lengh in hydrocracking of n- and iso-paraffins, is determined on the 

base of experimental data from industrial hydrodewaxing unit (Fig. 1). 
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With due take into account factors of non-stationary character of the processes, 

the mathematical model is written as a system of material and heat balances as 

follows: 

   
0

1 ;
l

i i
j j

C CG u W l a l dl
z l l

 
    
    

   
0

1 .
l

m m m m
p p j j j

T TC G u C G Q W l a l dl
z l l

  
           

     

Initial conditions: z = 0: Ci = Ci,0; T = T0; l = 0: Ci = Ci,0; T = T0. 

z – volume of treated feedstock, m3; G – feedstock flow rate, m3/h; u – linear flow 

rate, m/h; l – lengh of catalyst layer, m; Wj – total reaction rate, mol/(m3/h). 

The first step of the process modelling is development of a scheme of 

hydrocarbon conversion at the industrial conditions in the presence of catalyst;  

ρm – density of the mixture, kg/m3; m
pC  – heat capacity of the mixture, J/(kg·K);  

Qj – heat effect of chemical reaction, J/mol; T – temperature, K. 

 
Fig. 1. Distribution of paraffins according to the 

number of carbon atoms in molecule 
Fig. 2. Hydrocarbon conversion scheme in the 

process of hydrocracking 

Total reaction rate (W) for hydrocracking of heavy gas oil is determined 

asccording to the scheme of hydrocarbon transformations presented in Fig. 2. 
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INTEGRATED TECHNOLOGY OF OLEFINS SYNTHESIS FROM 
DYMETHYL ETHER 

Maksimov A.L., Magomedova M.V., Peresypkina E.G., Afokin M.I. 

TIPS RAS, Moscow, Russia, max@ips.ac.ru 

At present in the world the items of natural gas conversion into petrochemical 

products are relevant. One of directions is gas conversion into light olefins – so called 

GTO-process. Current GTO-technologies via methanol/dimethyl ether (MTP – Lurgi 

and DTP – Japan Gas Corporation) are include three well-known in industry stages 

as synthesis gas production, methanol synthesis, methanol dehydration to dimethyl 

ether (DME). The unique (original) stage of olefins synthesis is based over using of 

HZSM-5 catalyst (SiO2/Al2O3=150-200) which can modify by a metal [1] or non-metal 

[2, 3]. The main feature of current designs is dilution of feedstock – equilibrium 

mixture of DME/water/methanol after methanol dehydration – by a water steam at the 

olefins synthesis reactor inlet. This allows providing an efficient heat removal, 

enhancing the selectivity of light olefins synthesis and increasing the lifetime of a 

zeolite catalyst. In this respect the investigations of process are focused at the 

improving the catalyst activity, selectivity and stability on stream [4]. At the same 

time, the chemical engineering work is actively carried out to analyze the existing 

plants in order to find approaches and solutions to increase their performances [5]. 

One-step DME synthesis from synthesis gas is more energy efficient technology 

than two-step ones. However, in the case of conventional approach (with steam 

dilution of DME) it will required a complex system of DME recovery from gas phase 

[6], which in one and a half time increases the CAPEX, OPEX and prime cost. In this 

respect the most attractive is carrying out the DME conversion to olefins in a 

synthesis gas atmosphere. The investigation of gas atmosphere composition 

includes CO2, CO, synthesis gas is carried out over Ca-HZSM-5 [7], but obtained 

results are poor. It is shown that the catalyst activity is decreasing in time on stream. 

The using of synthesis gas is leads to decreasing of olefins selectivity due to 

presence of hydrogen in the reaction system. The TIPS RAS is developed the stable 

state catalyst of olefins synthesis based over HZSM-5 (SiO2/Al2O3=37) which 

modified by magnesium. The kinetic and chemistry of reaction in the nitrogen 

atmosphere is studied [8]. It is shown that the methanol and propylene are produced 

simultaneous and firstly initiate the alkene cycle mechanism. At high DME conversion 
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COMPARATIVE STUDY OF THE SULFUR SPECIATION  
BY GC AND GC×GC FOR GAS OIL CHARACTERIZATION  

IN HDT PROCESS SIMULATION 

Mekki-Berrada A., Zani M., Souchon V., Pereira de Oliveira L., Chainet F. 

IFP Energies Nouvelles, adrien.mekki-berrada@ifpen.fr 

The oil industry is nowadays under increasing pressure from legislators to 

improve the quality of diesel fuels, whereas the gas oil feedstocks tend to 

diversification (lesser fraction of Straight-Run), which leads to difficulties in predicting 

their reactivity. In order to better evaluate this reactivity, we need to properly measure 

the distribution of sulfur-containing compounds in the gas oils and in the hydrotreated 

products, thus enhancing the ability of the HDT process simulators to predict kinetics. 

At the moment, one of the major limitations to the use of kinetic models, is 

represented by the analytical uncertainties related to the sulfur speciation of 

feedstocks by Gas Chromatography coupled with Sulfur Chemiluminescence 

Detector (GC-SCD). In this respect, significant improvements have been achieved 

with the integration of multidimensional comprehensive chromatographic analyses 

such as 2D Gas Chromatography coupled with SCD (GC×GC-SCD) [1,2]. 

However, GCxGC-SCD is still not resoluted enough to allow its standalone use, 

and currently the best solution is obtained by taking the advantages and information 

of both techniques. The most effective way of combining the two analytical 

techniques still has been the subject of the present study. 

On a basis of 27 Straight-Run (SR), 14 Light Cycle Oil (LCO) and 11 Coker Gas 

oils, three different recombination rules have been tested on the sulfur families. On 

the one hand, Sulfides, Thiols and Benzothiophenes families display a common 

reactivity for each family, and their composition has been determined from the 

GCxGC-SCD data, which is a more adapted method than GC-SCD for separating 

families of different aromaticity. On the other hand, Dibenzothiophenes (DBT) share 

the same aromaticity but are of very different reactivity depending on the location of 

the methyl substituants on alpha position of the sulfur atom (DBT, 4DBT which is 

more difficult to convert and 46DBT which is even more difficult) [3]. The GCxGC-

SCD does not allow enough distinction among the alkylated DBT, and thus GC-SCD 

is also needed in order to represent the diversity of reactivity of the different types of 
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A THERMODYNAMICALLY CONSISTENT REACTOR MODEL FOR 
THE FURNACE BLACK PROCESS 

Mbasa Madlokazi1, Klaus Möller2 
1Orion Engineered Carbons, Port Elizabeth, South Africa, 

Mbasa.Madlokazi@orioncarbons.com 
2Process Modelling and Optimisation Group, Chemical Engineering,  

University of Cape Town, South Africa 

Commercial carbon black is a type of solid carbon which is manufactured in well 

controlled processes that process a precisely structured aggregate of carbon 

particles with a range of particle sizes, aggregate sizes, shapes, porosities and 

surface chemistry. Carbon black particles thus consists of >95 % pure carbon with 

minimal impurities of oxygen, nitrogen and hydrogen in a size range between 10 and 

500 nm. These are then fused together into chain like aggregates with provide some 

of the structural characteristics of the various carbon black grades. Carbon has many 

diverse uses in everyday commodities and by far one of the largest market volumes 

is in the manufacture of car tyres.  

The furnace black reactor, visualised in figure 1, is divided into two zones. The 

first zone combines 

preheated air with feed 

hydrocarbon to use 

combustion to preheat the 

reaction mixture. The hot 

mixture moves through a 

choke with the addition of 

more hydrocarbon feed to 

intiate the endothermic carbon black formation in the absence of oxygen. The 

reaction is quenched with water. In order to produce a high quality product with 

precise product properties it is necessary to have good control on the temperature 

profile, the feed compositon and water addition[1]. The aim of this project is thus to 

develop a pocess reactor model that is able to reproduce the mass and thermal 

profile of the furnace black reactor. 

The reactor was modelled as two zones. The first zone was treated as 

exothermic chemical equilibrium reactor (Gibbs reactor with heat loss) carryout the 

combustion of the hydrocarboin feed. The second zone was treated as a tubular plug 

 

Figure 1. Illustration of the carbon black furnace 

mailto:Mbasa.Madlokazi@orioncarbons.com
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flow reactor (PFR). The 

kinetics in zone 2 followed the 

two stage scheme proposed in 

figure 2. In order to capture the 

correct thermal and mass 

profiles in stage 1, elementary 

chemical reactions where 

developed for the fomation of 

the polyaromatics with 

associated thermo-chemical 

properties and kinetics. In 

stage to and particulate 

formation and agglomeration model was used. This reaction system was ingtegrated 

until the water was added to the the reaction mixture. Every water addition required 

the reactor simulation restart to account for the change in initial conditions.  

References 
[1] F.C. Lockwood and J. E. van Niekerk, (1995), Parametric Study of a Carbon Black Oil Furnace, 

COMBUSTION AND FLAME, 103, 76-90. 
[2] J. Warnatz, U. Maas and R.W. Dibble, (2006), Combustion, Physical and Chemical 

Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edition, Springer, 
chapter 18. 
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Figure 2. The conversion of gaseous carbon feed 
molecules to carbon black particulates [2] 
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MODELING THE REMOVAL OF SULFUR, AROMATICS AND 
HEAVIER COMPOUNDS OF LIGHT CYCLE OIL 

Roberto Palos, Alazne Gutiérrez, Pedro Castaño, Miren J. Azkoiti, 
José M. Arandes, Javier Bilbao 

Department of Chemical Engineering, University of the Basque Country UPV/EHU, 
PO Box 644, 48080 Bilbao, Spain, roberto.palos@ehu.eus 

Introduction 
The sustainability of the oil refining industry requires the development of 

intensification strategies for upgrading crude and secondary streams. The production 

of light cycle oil (LCO), byproduct of FCC unit, is increasing to meet with the demand 

of medium distillates, however, its high content in sulphur, aromatics, and low cetane 

index make it unsuitable as a fuel [1]. The severe hydroprocessing of LCO using 

bifunctional catalysts based on transition metals (Co, Mo, Ni, W) is an interesting 

route to reduce the high content of impurities in these feedstocks and to produce 

appropriate gasoline and diesel blending streams [2]. Therefore, in this work the 

kinetic modeling of the hydroprocessing of LCO with a NiMo/Al2O3 catalyst has been 

studied based on the reactions of: i) hydrodesufurization (HDS), ii) 

hydrodearomatization (HDA) and iii) hydrocracking (HC). 

Experimental / methodology 
Kinetic data have been obtained in a fixed bed reactor under the following 

conditions: 320-400 °C; 80 bar; space time, 0-0.5 gcat h gLCO
–1; and, H2/LCO 

volumetric ratio of 1000. Chemical composition of LCO is: 34.3 % paraffins and 

isoparaffins, 3.7 % naphthenes and 62.1 % aromatics, on which 31.1 % are 1 ring 

aromatics and the remaining 30.9 %, 2+ ring aromatics. The total sulfur content is of 

10,212 ppm (6,603 ppm of reactive compounds in hydroprocessing and 3,609 ppm of 

refractory compounds). The products lumps are distributed as naphtha (TB <216 °C, 

10.9 %), diesel (TB = 216-350 °C, 69.7 %) and gasoil (TB >350 °C, 19.4 %). 

For the hydrodesulfurization, kinetic conversion stages based on Langmuir-

Hinshelwood mechanisms have been proposed, considering the H2S formed as an 

inhibitor, whereas for hydrodearomatization and hydrocracking sequential kinetic 

schemes have been proposed considering reversible transformations from heavier 

lumps and chemical groups to the lighter ones. 
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Results and discussion 
Obtained results for the three different 

kinetic models at one of the studied 

temperatures (360 °C) and for the whole range 

of space time are shown in Figure 1. Focusing 

on the kinetic model for the HDS (Figure 1a), it 

can be seen that for refractory compounds 

(MxDBTs) a higher conversion is predicted for 

the highest space time. The deviation of the 

fitting can be attributed to the higher internal 

diffusional limitations of refractory compounds 

on the catalyst particles at higher space time 

and temperatures, meaning that apparent 

activation energy are lower than calculated. 

On the other hand, pretty good fittings of 

calculated values for the concentration to 

experimental data are obtained both for HDA 

and HC kinetic models (Figure 1b and c). 

Different kinetic models have been proposed 

for HDA and HC, being depicted results of the 

models with the best statistical significance. It 

should be mentioned also that kinetic model 

predicts the marked effect of the space time 

and the temperature in the concentration of 

chemical groups and of lumps, as well as 

reached steady state. 
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Figure 1. Comparison between the 
experimental data (symbols) and 

predicted data (lines) for the models of 
HDS (a), HDA (b) and HC (c) 
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ON THE REACTIVITY OF MONO-LIGNOL DERIVATIVES 

SriBala G., Carstensen H.-H., Van Geem K.M.*, Marin G.B. 

Laboratory for Chemical Technology, Ghent University,  
Technologiepark-Zwijnaarde 914 - 9052 Ghent, Belgium,  

*Kevin.VanGeem@UGent.be 

The valorization of lignin, the second most abundant component of lignocellulosic 

biomass, has remained a challenge for many years. Given the large concentration of 

phenolic groups, lignin appears to be a good potential candidate for the production of 

aromatic chemicals such as catechols and p-vinyl phenols. Production of such 

chemicals requires the ability to depolymerize lignin in a controlled manner. The 

thermochemical route uses fast pyrolysis to crack lignin polymers to smaller 

fragments. In order to be able to do so in a guided way, the thermal decomposition 

chemistry of lignin needs to be understood in great detail.  

Lignin is mainly built from three monolignols, which are derivatives of cinnamyl 

alcohol and distinguish themselves through the aromatic unit, viz. p-hydroxy phenyl 

(H), guaiacyl (G), and syringol (S). Lignols are connected via -O-4, -O-4 ether and 

8-8 linkages. It is assumed that both, the substitution pattern of the benzene ring and 

the linkage between the units have strong impacts on the product distribution. Efforts 

are underway to generate kinetic models able to describe these impacts and to 

predict pyrolysis product spectra as a function of operation condition. So far, the 

pyrolysis studies coupled with EPR analysis of monolignols and their derivatives 

provide mechanistic information of their thermal decomposition. However, very few 

studies focus on the intrinsic pyrolysis kinetics of these lignin model compounds. 

The current work presents a comprehensive study of the fast pyrolysis kinetics of 

lignin model compounds such as cinnamic acid, p-coumaric acid, ferulic acid and 

their derivatives phenol, guaiacol and syringol. This study is performed with a two-

stage micropyrolyzer setup connected on-line to the injector port of the GC. The 

setup also consists of an external 6-port valve to introduce a pulse of internal 

standard gas (neon-butane mixture) to allow easy quantification of the products. The 

GC x GC-FID/MS is equipped with a cold-trap cooled cryogenically for the entire 

duration of the reaction to refocus the product molecules. The molecules are then 

released based on their boiling points during the cold-trap heating. The light 

molecules are analyzed using a special GC with TCD and PDD detectors. 

mailto:Kevin.VanGeem@UGent.be
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All the experimental conditions are designed in such a way that the transport 

effects are faster than the reaction kinetics. Sample sizes of 50-100 g have been 

used in order to avoid possible mass transfer effects. In this work, one set of 

experiments provide intrinsic kinetics of solid-to-gas transformation of lignin model 

compounds obtained by connecting the 1st reactor directly to the GC x GC-MS/FID. 

The samples are assumed to be instantaneously heated while being dropped into the 

first-stage heated reactor eliminating the effects of heating rates on the product 

evolution. 

 
In the second type of experiments, the first stage of the micropyrolyzer is used for 

vaporization of the samples and the second stage acts as an isothermal plug flow 

reactor, which can be operated up to 900 °C. The preliminary results show that the 

acids of monolignols decompose into their vinyl counterparts and CO2 at 

temperatures as low as 160-190 °C. The gas-phase pyrolysis product profiles thus 

obtained will be interpreted with mechanistic information found in the literature and 

utilized in the future to construct a detailed kinetic model for lignin decomposition. 
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EXPERIMENTAL DEMONSTRATION OF BIOMASS FAST 
PYROLYSIS IN THE GAS-SOLID VORTEX REACTOR 

Kulkarni S.R., Gonzalez-Quiroga A., Heynderickx G.J.,  
Van Geem K.M. and Marin G.B. 

Laboratory for Chemical Technology, Ghent University,  
Technologiepark-Zwijnaarde 914, 9052 Ghent, Belgium,  

kevin.vangeem@ugent.be 

Gas-solid contacting in a centrifugal field results in denser solids beds and higher 

gas-solid slip velocities than those obtained in the Earth’s gravitational field. This 

opens possibilities for substantially smaller, cleaner, safer and more energy efficient 

processes. The concept is realized in the Gas-Solid Vortex Reactor (GSVR) with 

centrifugal accelerations up to two orders of magnitude higher than the Earth’s 

gravitational acceleration. In the GSVR, gas is injected at high velocity via 

tangentially oriented inlet slots in a cylindrical chamber. A rotating solids bed forms at 

the expense of the azimuthal momentum of the gas. In this work, the transformation 

of biomass via fast pyrolysis is experimentally demonstrated. 

The GSVR technology can potentially benefit the biomass fast pyrolysis process 

in terms of both bio-oil yield and bio-oil quality. In the GSVR, convective heat transfer 

coefficients that are three to five times higher than those in gravitational fluidized 

beds can be reached [1]. The estimated residence time of the pyrolysis vapors before 

reaching the quenching section ranges from 50 to 110 ms. The enhanced heat 

transfer and bed uniformity allows to gain improved control on the pyrolysis 

temperature. As a consequence, it is possible to produce bio-oils with a higher 

selectivity towards targeted components [2]. 

A reactive GSVR demonstration unit has been designed, constructed and tested 

under cold flow conditions at the Laboratory for Chemical Technology (See Figure 1) 

[3]. For the demonstration unit, preheated N2 supplies the thermal energy required by 

the fast pyrolysis process but a heat carrier loop of solids can also be implemented. 

A broad range of operation conditions can be evaluated: N2 mass flow rates of  

5-10 g s–1 and biomass feed mass flow rates of 0.14-1.4 g s–1. Cold flow experiments 

with continuous feeding of biomass confirmed that the GSVR sustains a rotating 

fluidized bed with an average bed height of 15 mm. Additional experiments with 

mixture biomass-char confirmed that biomass is preferentially retained over char. 
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EXPERIMENTAL HEAT TRANSFER MODELLING  
IN A GAS-SOLID VORTEX UNIT 

Kulkarni S.R., Schuerewegen C., Manzano M.N., Heynderickx G.J.,  
Van Geem K.M., Marin G.B. 

Laboratory for Chemical Technology, 
Technologiepark 914, 9052 Ghent, Belgium 

Industry aims at improving processes to increase profit. This must however be 

done without compromising safety, environment or working environment. The 

combined approach is referred to as Process Intensification (PI)[1]. PI starts to 

become difficult in multiphase processes, like the fluidized bed catalytic cracking 

(FCC). Gravitational fluidized bed (FB) reactors are typically used for these 

multiphase processes. A key problem in FBs is their size. A conventional FCC unit is 

10-20 m long, 0.2-0.6 m in diameter and is operated at high temperatures (750-

850 K). Slip velocities are low, resulting in limited heat and mass transfer. The latter 

has a negative effect on conversion and yields. Keeping heat losses low is not an 

easy task. Also a further increase of the fluidizing agent flow becomes unlikely. 

Using a Gas-Solid Vortex Unit (GSVU) is an option to tackle the described 

problem. Gas is injected through tangential inlet slots into a disk-like shaped 

chamber. Momentum transfer from gas to particles in the chamber makes them 

rotate in the form of a FB near the chamber wall. The gas flow is directed towards a 

central gas outlet, thus shortening the gas-solid contact time. Depending on the Swirl 

ratio S (the ratio of tangential to radial velocity component at the inlet slot), the total 

gas flow rate, the amount of solids, etc. the solids form a densely packed fluidized 

bed. Slip velocities in the bed are high, resulting in high heat and mass transfer. The 

GSVU can thus handle a very high gas throughput without compromising the bed 

quality. Stronger still, the bed will in general become more stable with increasing gas 

flow rate. This combination of properties implies that the FB in a centrifugal field can 

replace the conventional FBs in the gravitational field with a considerable size 

reduction of the equipment, coupled with more effective inter-phase transport 

processes. [2] [3] 

At the Laboratory for Chemical Technology (LCT, Ghent University) heat transfer 

is studied experimentally in a GSVU (chamber diameter = 139 mm; chamber length = 

25 mm; number of inlet slots = 16; slot width = 0.6-1 mm). Heated compressed air is 
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ELECTROCHEMICAL UPGRADING OF FAST PYROLYSIS BIO-OIL 

Mehmet Pala1, Kun Guo2, Antonin Prévoteau2, Korneel Rabaey2,  
Frederik Ronsse1, Wolter Prins1 

1TCCB Research Group, Department of Green Chemistry and Technology,  
Ghent University, Ghent, Belgium, e-mail: Mehmet.Pala@UGent.be 

2CMET, Department of Biotechnology, Ghent University, Ghent, Belgium 

Fast pyrolysis process offers a versatile platform for the production of renewable 

fuels and/or chemicals from biomass. The primary product of fast pyrolysis process, 

bio-oil, can be produced with yields of up to 75 wt. % from lignocellulosic biomass. 

However, utilization of bio-oil as an intermediate or final product poses challenges 

due to the intrinsic instability and reactivity of the bio-oil components. These adverse 

properties of bio-oil are simply a reflection of its complex chemical composition 

(comprising of aldehydes, ketones, carboxylic acids, furans, etc.). Thus, the reactive 

components of bio-oil should be converted preferably to more stable compounds 

prior to its further utilization. To achieve this goal, several processes (e.g. 

esterification, catalytic pyrolysis, hydrotreatment) have been investigated in literature, 

obtaining results with varying degrees of success. A recently proposed approach to 

upgrade/stabilize bio-oil components is electrochemical hydrogenation (ECH) [1]. In 

this attractive approach, the water present in bio-oil acts as the hydrogen source to 

reduce the reactive bio-oil components (aldehydes, ketones, etc.) to their 

corresponding alcohols at ambient temperature and pressure.  

In this work, we investigated bio-oil upgrading via ECH process in a two-

compartment electrochemical reactor. The anode and cathode chambers of the 

reactor were separated by a cation exchange membrane. The catholyte was 130 ml 

water soluble bio-oil (ca. 20 wt. % bio-oil in aqueous solution) and the anolyte was 

1M H2SO4 solution. The tested cathode materials included 9 cm2 Ti, Ru-coated Ti 

(Ru/Ti), and Pt-coated Ti (Pt/Ti) electrodes, with a constant projected current density 

of 44 mA cm–2. The total reaction time was 160 hours for each test. Higher 

conversion of reactive bio-oil components (e.g. 84 % for glycolaldehyde conversion 

to ethylene glycol) was achieved with Ti electrode compared with Ru/Ti (54 %) and 

Pt/Ti (46 %) electrodes. In the case of Ru/Ti and Pt/Ti electrodes, hydrogen evolution 

reaction was the preferred pathway rather than the desired electrocatalytic 

hydrogenation of the organic compounds, evidenced by greater than 85 % coulombic 

efficiencies achieved for hydrogen production with these electrodes. This difference 
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could be attributed to the higher overpotential of the hydrogen evolution reaction on 

Ti electrode. Despite the high conversions achieved for some compounds, selectivity 

towards desired alcohols and diols were rather low (e.g. 12-18 % ethylene glycol 

selectivity for glycolaldehyde conversion) for the electrodes tested in this study. High 

energy needs required for the conversion (due to the low faradaic efficiencies) is 

recognized as another challenge.  

Upgrading of the water soluble fraction of bio-oil through the ECH process has 

potential, but further investigation is needed to understand and optimize the process, 

and achieve the desirable product yields and selectivities. 

References 
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ISOLATION OF PHENOLICS FROM BIO-OIL USING FLEXIBLE  
MIL-53 AS HIGHLY SELECTIVE ADSORBENT 

Chunmei Jia1, Bart Bueken1, Kevin M. Van Geem2, Dirk De Vos1 
1Centre for Surface Chemistry and Catalysis K.U.Leuven, Corelab 1A Kapeldreef, 

3001 Leuven, Belgium. E-mail: Dirk.devos@kuleuven.be 
2Laboratory for Chemical Technology, Universiteit Gent, Technologiepark 914,  

9052 Gent, Belgium 

Phenolics are important compounds with applications in the food, wine, plastic, 

tanning, agrochemical and pharmaceutical industry. The phenolic compounds 

nowadays used are either synthesized from fossil feedstocks or extracted from bio-

mass. In light of the current drive towards a sustainable chemical industry, the latter 

route is highly appealing, since the compounds in this feedstock are already 

extensively functionalized. Following pyrolysis of the lignocellulose fraction, a crude, 

highly complex bio-oil mixture is obtained [1]. Therefore, the development of efficient 

methods to harvest and purify the large number of phenolics present in this bio-oil is 

a key step in their production. However, the solvent extraction methods currently 

used involve large amounts of solvent, which poses challenges to the sustainability of 

the process. Alternatively, phenolics could also be recovered through adsorption. 

Liquid phase separation using porous materials as adsorbents is considered here as 

an easier and more sustainable way. The zeolite faujasite is well known as an 

industrial adsorbent for the selective uptake of C8 alkyl aromatics, based on the 

different confinement of the various isomers.  

Metal Organic Frameworks (MOFs) are used here to remove phenolic 

compounds out of pyrolysis bio-oil. MOFs have seen exploration as adsorbent for 

liquid phase separations, for instance in the separation of xylenes and ethylbenzene, 

for fuel upgrading through desulfurisation and denitrogenation, for purification 

purposes by the targeted removal of organic contaminants, as well as inorganic 

contaminants from water, and even for the recovery of bio-based molecules from 

aqueous mixtures [2]. By using the flexible MOFs MIL-53(Al), as well as its 

commercial counterpart Basolite A100, the selective uptake of 4-methylguaiacol from 

a simulated bio-oil mixture was achieved, even in the presence of a huge amount of 

hydrogen bonding competitors such as water, methanol, propionic acid and furfuryl 

alcohol. As revealed by X-ray diffraction analyses, these materials transition during 

the adsorption process between a narrow pore form at low 4-methylguaiacol loading 
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THE OXIDATION OF LINEAR C4-C6 ALDEHYDES :  
AN EXPERIMENTAL AND KINETIC MODELLING STUDY 

Namysl S.1,*, Pelucchi M.2, Herbinet O.1, Ranzi E.2, Frassoldati A.2,  
Faravelli T.2, Battin-Leclerc F.1 

1Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 
ENSIC, Nancy Cedex, France. *sylvain.namysl@univ-lorraine.fr 

2Department of Chemistry, Materials and Chemical Engineering “G. Natta”, 
Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy 

Aldehydes are known as important intermediates and products of alkanes and 

biofuels combustion. Many studies have been performed on formaldehyde and 

acetaldehyde oxidation [1], [2]; however there is a lack of experimental data about 

heavier aldehydes oxidation and especially on C4-C6 aldehydes, in particular at low 

temperatures. In order to propose and to validate a kinetic model for the oxidation of 

aldehydes, the oxidations of some linear aldehydes have been carried out. 

In this context, since the n-hexanal oxidation has already been studied by 

Rodriguez et al. [3] in a jet stirred reactor, the oxidation of n-butanal and n-pentanal 

has been investigated in the same reactor. These experiments have been performed 

over the temperature range 500-1100 K, at a residence time of 2 s, pressure of 

106.7 kPa, inlet fuel mole fraction of 0.005 and at three equivalence ratios (φ=0. 5, 1 

and 2). Gas chromatography analysis coupled with various detectors (Flame 

Ionization Detector, Thermal Conductivity Detector and Mass Spectrometer) was 

used to identify and quantify the oxidation products and the fuel conversion.  

 
Figure 1. Comparison of experimental (symbols) and predicted (lines) mole fraction profiles of 0.5 % 
n-butanal, n-pentanal and n-hexanal [3] oxidation in an isothermal jet stirred reactor, φ = 0.5, 1.0, 2.0, 

p = 1.07 atm, τ = 2.0 s. Dotted line: example of vertical lumping, n-pentanal = 50%/50%  
(n-butanal/n-hexanal) 

A modeling study was performed to compare the results of the experiments with 

the model published by Pelucchi et al. [4], extending it to describe the oxidation 

heavier molecular weight aldehydes. Using this model, a good agreement between 
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experiments and model was obtained in terms of fuel conversion and for most of the 

detected species. This work further constrains pathways relevant to aldehyde 

oxidation, and highlights the influence of the carbonyl moiety on intermediate species 

formation. 
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[2] Dagaut, P.; Reuillon, M.; Voisin, D.; Cathonnet, M.; McGuinness, M.; Simmie, J.M., Acetaldehyde 

Oxidation in a JSR and Ignition in Shock Waves: Experimental and Comprehensive Kinetic 
Modeling, Combustion Science and Technology, 1995, 107(4-6), 301-316. 

[3] Rodriguez, A.; Herbinet, O.; Battin-Leclerc, F., A study of the low-temperature oxidation of a long 
chain aldehyde: n-hexanal, Proceedings of the Combustion Institute, 2017, 36(1), 365-372. 

[4] Pelucchi, M.; Ranzi, E.; Frassoldati, A.; Faravelli, T., Alkyl radicals rule the low temperature 
oxidation of long chain aldehydes, Proceedings of the Combustion Institute, 2017, 36(1), 393-401. 
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AN EXPERIMENTAL AND KINETIC MODELLING STUDY OF C4-C5 
CARBOXYLIC ACIDS PYROLYSIS AND OXIDATION IN A JET 

STIRRED REACTOR 

Matteo Pelucchi1, Sylvain Namysl2, Olivier Herbinet2, Alessio Frassoldati1, 
Tiziano Faravelli1, Frédérique Battin-Leclerc2 

1Department of Chemistry, Materials and Chemical Engineering,  
Politecnico di Milano, Milan, Italy, matteo.pelucchi@polimi.it 

2Laboratoire Réactions et Génie des Procédés,  
CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France 

Many reasons lie behind the interest in carboxylic acid oxidation chemsitry. 1) 

Organic acids are found in significant concentrations in the troposphere and are 

known to considerably affect environmental chemistry. Biomass combustion and 

vehicle emissions are believed to be among the most important sources that can be 

directly related to human activities. 2) Oxygenated species, including those carrying 

acid functionalities, are very abundant in the tar released from biomass pyrolysis. 

Acetic acid, for example, is the major acidic components of bio-oils derived from 

biomass fast pyrolysis [1]. 3) New fuels formulations meant to improve environmental 

impact and decrease energetic dependence on fossil fuels are obtained by blending 

increasing amounts of biofuels (e.g. alcohols) into conventional fuels. Recent studies 

highlighted how the combustion of such fuels might introduce new issues for human 

health, as their impact on pollutant formation has not been fully assessed. In fact, 

new unregulated pollutants such as aldehydes and organic acids may be formed in 

significant quantities during the combustion of these new fuels. Therefore, according 

to the succesive oxidation steps as alcohol → aldehyde → carboxylic acid, the 

description of biofuels combustion has to properly account for the formation of relevant 

intermediates [2]. 4) Recent experimental and modeling studies on the low 

temperature oxidation chemistry of hydrocarbon fuels, highlighted the importance of 

organic acid formation from alternative low temperature pathways of alkanes (e.g. 

Korcek mechanism) [3]. From a fundamental kinetic perspectives all of the above 

reasons share the same necessity to properly assess the influence of the carboxyl 

functionality on the overall reactivity of different molecular weight acids. The same 

systematic approach has been recently applied to linear aldehydes and alcohols [2, 4]. 

Stemming from the scarcity of experimental data available in the literature for gas 

phase kinetics of acetic and higher molecular weight acids, this work presents new 
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experimental data obtained in an atmospheric pressure jet stirred reactor for the 

pyrolysis and oxidation (φ=0.5, 1.0, 2.0) of butanoic and pentanoic acids, in the 

temperature range T=700-1100 K (Figure 1).  

A kinetic model was derived from a 

recent revision of acetic acid kinetics [5] 

based on ab initio transition state theory 

calculation and from alkanes rate rules. 

This model was used to succesfully 

interpret the decomposition of the starting 

fuels and the formation of intermediate 

and product species. The insertion of an 

oxygenated functional group into an 

alkane-like molecule (e.g. n-butane → butanoic acid) strongly modifies bond 

dissociation energies, therefore its reactivity [6]. In addition to enhanced unimolecular 

initiation reactions and H-abstraction reactions, at intermediate and lower 

temperatures a major role si played by molecular reactions. In the case of carboxylic 

acids R-(C=O)-OH molecular dehydration (R-(C=O)-OH↔H2O+R=C=O) and 

decarboxylation (R-(C=O)-OH↔CO2+RH) reactions play a key role. 
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Faravelli, T., A Kinetic Modelling Study of Alcohols Operating Regimes in a HCCI Engine. SAE 
International Journal of Engines 2017, 10, 2354-2370. 
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2015, 162(5), 1679-1691. 
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Proceedings of the Combustion Institute, 2018, submitted.     

[5] Cavallotti, C.; Pelucchi, M.; Frassoldati, A., Analysis of Acetic Acid Gas Phase Reactivity: Rate 
Constant Estimation and Kinetic Simulations. Proceedings of the Combustion Institute, 2018, 
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Figure 1. Experimental conversion of pentanoic 
acid in an atmospheric pressure Jet Stirred 

Reactor. Pyrolysis and stoichiometric oxidation, 
τ = 2.0 s 
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EXPERIMENTAL AERO-THERMAL INVESTIGATIONS OF SWIRLING 
FLOWS IN THREE-DIMENSIONAL RIBBED TUBES 

Virgilio Marco1, Kevin M. Van Geem2, Tony Arts1, Guy B. Marin2 
1von Karman Institute for Fluid Dynamics, St. Gilles/Brussel, Belgium, 

marco.virgilio@vki.ac.be 
2Laboratory for Chemical Technology, Ghent University, Belgium 

In steam cracking of hydrocarbons for the production of ethylene, the reactors 

operate under conditions that result in residence times of less than 1 second. In 

combination with the endothermic character of the process this requires high heat 

transfer rates. One of the most promising solutions is the use of turbulators [1, 2, 3]. 

Generally speaking, they disrupt the boundary layer at the wall and make the 

flow/temperature profile more homogeneous [4]. This does thus not only result in 

reduced radial gradients it also implies that lower tube wall temperatures are needed 

to obtain a similar process gas temperature. As a consequence, fouling phenomena 

that occur at the wall such as coking on the inner tube side is minimized. The latter 

also positively influences the tube life.  

Although it has been demonstrated by several authors that the increase of the Nu 

number is about twice the one seen in a smooth tube at the same Reynolds and 

Prandtl numbers, the ribbing technique is limited by the rise in the friction losses [1]. 

Therefore, in an ideal world a multi-objective optimization design could be envisioned 

which can find out the best solution to the problem of maximum heat transfer and 

minimum pressure drop. Obviously this requires that the optimization tool needs a 

fluid dynamic solver which has to be able to well simulate the vortexes generated at 

the wall.  

Data for the validation of Large Eddy Simulation on chemical reactors has been 

provided [5]. The way the code solves the Navier-Stokes and the energy equation for 

the small scales can be verified. The investigation has been done with Stereo-

Particle Image Velocimetry [6] to measure the flow field and with Liquid Crystals 

Thermography to quantify the heat transfer at the pipe wall [7]. The measurements 

outcome shows an induced 3-dimensional separation which makes the flow to 

impinge on the wall (Fig. 1), providing an enhanced heat transfer. Anyway, the 

topology of the flow and the increased turbulence produce more skin friction at the 

wall. An overall efficiency of the energetic system, which takes into account both the 
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previously reported transient behavior of vortices inside dimples [13] and the 

influence of reactor design and process conditions is studied. 

These findings are used to propose an improved dimpled design, which is used in 

fluid dynamic simulations coupled with detailed kinetics to investigate the effect of the 

dimples and the associated enhanced heat transfer on product yields and coking 

rate. 
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CRACKING PROCESS USING A HYBRID 3D-1D APPROACH 
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Steam cracking is the predominant process to produce light olefins which are 

often referred to as the building blocks of the chemical industry. As steam cracking is 

an energy-consuming process, improving the energy efficiency of the steam cracking 

process has an immediate return. The Horizon2020-funded IMPROOF project aims 

to reduce the energy demand of this process by implementing various novel 

technologies ranging from oxy-fuel combustion to augmented reactor geometries and 

high emissivity coatings1. These novel technologies are studied at a laboratory-scale 

and the most cost-effective technologies are to be implemented on an industrial 

scale.  

Three dimensional computational fluid dynamics (CFD) modelling offers valuable 

insight in how individual or combined novel technologies contribute to the overall 

improvement of the energy efficiency. In the present work coupled simulations of the 

steam cracker radiant section, accounting for different novel technologies, are 

performed. The energy impact will be analyzed. Remark that a complete study of the 

energy balance requires that the convection section, the transfer line exchanger and 

the steam drum are accounted for. 

A hybrid CFD-1D model is used to quantify the process improvement by 
implementation of a novel technology. For novel three dimensional reactor 
geometries, the focus is on modelling the reactor side using 3D CFD. These 
simulations are performed using an industrial heat flux profile or results obtained from 
simplified, one dimensional, furnace simulations as the radiant section boundary 
condition2. However, for novel technologies on the furnace side, e.g. high emissivity 
coatings and oxy-fuel combustion, highly detailed 3D CFD simulations of the furnace 
box are performed, iteratively combined with low cost one dimensional reactor 
simulations using the commercial software package COILSIM1D3-5. The initial 
objective is to optimize and validate the existing hybrid models using experimental 
data. The future goal is to perform fully coupled three dimensional reactor and 
furnace simulations. 
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The production of light olefins through steam cracking is considered to be a 

mature technology [1]. Nevertheless, a lot of room for optimization is still available, 

especially in the energy consumption per ton of produced light olefins. The energy 

consumption of steam cracking is believed to contribute 8 % of the chemical 

industry’s total primary energy [2]. A significant contribution to a reduced energy 

efficiency is the unavoidable decoking step, because coke builds up on the reactor 

walls, as a result of side reactions [3].  

The sole purpose of the IMPROOF project is to demonstrate the latest 

technological innovations in the field of coke mitigation and energy efficiency during 

steam cracking. These innovations include the use of new advanced high 

temperature alloys, in combination with novel 3D reactor technologies and the 

application of high emissivity coatings. Two industrial reactor materials, Centralloy® 

ET45 micro (chromia former) and Centralloy® HT E (alumina former) [4] were 

compared  based on their coking resistance in a pilot plant steam cracking furnace. 

The HT E material, in addition, was coupled with the 3D reactor technology, SCOPE® 

[5] (Figure 1) to benchmark it to the bare, unprocessed, coils. In total five coking 

cycles were performed, for which cycle four resembled high-temperature EOR 



industr

SOR in

and ev

the ap

resulted

combin

resistan

bare ET

Sup

CFD si

the res

Referen
[1] Exx
[2] Ren

emis
[3] Mun

Crac
136

[4] Jako
Spu
Chro

[5] Wol
prod

Acknow
The

(H2020-S
“Chemis

ial conditio

ndustrial c

en improv

plication o

d in a decr

nation of 

nce, result

T45 micro 

pplementa

mulations.

ults of the 

nces 
onMobil, The

n, T., M.K. Pa
ssions and p
noz Gandaril
cking of Sulf
44-13655. 
obi, D., P. Ka

un-Cast Mate
romia-Formin
pert, P., et a
ducing a finn

wledgment 
e work leadi
SPIRE-04-20

stry of smart 

ons to meta

onditions. 

ed their co

of the SCO

reased cok

HT E to

ting in a co

and HT E 

ry improve

. In this reg

respective

 
Figure

e outlook for 
atel, and K. B
production co
las, A.E., et 

fur-Free Nap

arduck, and V
erials for Stea
ng Alloys, in N
al., Finned tu
ned tube. 200

ng to this in
016) under 
energy carrie

IMPR

allurgical a

After agin

oking resis

OPE® tech

king rate in

ogether wi

oke reduct

reactors.

ements can

gard, the o

e CFD simu

e 1. SCOPE®

r Energy: A v
Blok, Steam 
osts. Energy,
al., Coking R
htha. Industr

V.R.A. Freih
am-Cracker 
NACE Corro
be for the the
08, Google P

ntervention 
grant agree

ers and tech

ROOF ses

222 

age the ma

ng, only th

stance. Due

hnology, t

n comparis

ith SCOP

tion of nea

n be obtain

obtained ex

ulations. 

® 3D reactor 

view to 2040.
cracking and
, 2008. 33(5)
Resistance o
rial & Engine

err, The Hig
Furnaces - A

osion 2013. 2
ermal cracki

Patents. 

has received
ement n°723
nologies”  

ssion 

aterial. The

e HT E re

e to the re

the TMTs 

son with th

PE® showe

arly a facto

ned throug

xperimenta

coil [28] tech

 2012. 
d methane to
): p. 817-833

of Specialized
eering Chem

h-Temperatu
A Comparativ
2013. 
ing of hydroc

d funding fr
3706 and fr

e remaining

eactors pro

educed rad

decreased

e bare tub

ed an ex

or 3 in com

h the appl

al results a

hnology 

o olefins: Ene
3. 
d Coil Materi
istry Researc

ure Corrosion
ve Study of A

carbons, and 

rom the Eur
rom the CO

g cycles re

oved to be

dial gradien

d. This de

be alternati

xceptional 

mparison w

ication of r

are compar

ergy use, CO

ials during S
ch, 2014. 53

n Resistance
Alumina- and

d process for 

ropean Unio
OST Action 

esemble 

e stable 

nts after 

ecrease 

ve. The 

coking 

with the 

reactive 

red with 

O2 

team 
3(35): p. 

e of 
d 

on H2020 
CM1404 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

POSTER PRESENTATIONS 



 



PP-1 

225 

PROCESSING OF C4 FRACTION CONTAINED IN THE WASTE 
GASES OF REFINERIES BY CATALYTIC ISOMERIZATION TO 

ISOBUTANE ON Pd/SULFATED ZIRCONIA 

Aksenov D.G., Kodenev E.G., Ovchinnikova E.V., Echevskii G.V.,  
Chumachenko V.A. 

Boreskov Institute of Catalysis SB RAS, 
Pr. Akademika Lavrentieva, 5, Novosibirsk 630090, Russia, 

vachum@catalysis.ru 

Introduction 
The increase in the depth of oil refining and the shift to heavier oil processing is 

inevitably accompanied by an increase in the formation of waste oil refinery gases. In 

this case, light alkanes, in particular n-butane fraction (C4 fraction), do not find an 

equivalent market. Processing of C4 fraction aimed at the production of high-octane 

oxygen-containing components of motor fuels, in particular, tert-butyl alcohol (TBA) is 

regarded as a promising solution to improve economic issues. The technological 

process to solve this problem was proposed in [1]. It includes two consecutive 

stages, the first is n-butane isomerization to isobutane [2], and the second is 

oxidation of isobutane to tert-butyl hydroperoxide (TBHP), followed by the 

decomposition of the formed TBHP to the targeted TBA. 

Experimental 
In the present work, we have performed an experimental study of the 

isomerization of the n-butane fraction to isobutane on a BIC proprietary Pd-SO4/ZrO2 

catalyst (Pd load 0.5 % w/w, SPd = 1.2 m2/g cat, DPd = 2.1 nm, Pd dispersity = 53 % 

of theoretical). Chromatographic analysis of industrially available C4 fractions 

showed that n-butane is the main component of these fractions (90-98 % w/w), other 

components are isobutane, 2.2-dimethylpropane, propane, butene-1, isobutene, 

trans-butene-2, cis-butene-2, and C5+. The isomerization reaction was carried out in 

an isothermal flow reactor with an internal diameter of 10 mm, the height of the 

catalyst bed was up to 10 cm. The catalyst pellets were formed initially as extruded 

trilobes with an outer circle diameter 2 mm and a length of 3-4 mm; then they were 

crushed and the 0.25-0.50 mm fraction was screened. 10-14 g of this fraction diluted 

with quartz was loaded into the reactor. Reaction parameters were varied within the 

ranges as follows: temperature 120-160 °C, pressure 20-25 bar, weight hourly space 

velocity (WHSV) of n-butane 1.0-2.5 h–1, and hydrogen/butane molar ratio 0.1-0.5. 
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Results 

Thermodynamic equilibria for the branched paraffin isomers are generally favored 

by low temperatures. Efficient catalysts for n-butane isomerization should be active 

well below 200 °С. At 120 °C, the equilibrium conversion of n-butane to isobutane is 

appx. 67 %, then it drops to 60 % with an increase in temperature to 160 °C. The 

effect of the n-butane isomerization process conditions such as temperature, WHSV 

of n-butane, and hydrogen/butane molar ratio on the performance of Pd-SO4/ZrO2 

catalyst was investigated within the ranges indicated above. It is determined that at a 

given temperature, conversion of n-butane strongly depends on the molar ratio H2/C4 

and grows substantially with its decrease approaching the equilibrium values; also, it 

declines with the increase in WHSV of n-butane, that is, with the decrease in 

residence time. With the temperature increase, conversion of n-butane grows in all 

cases. Selectivity towards isobutane decreases slightly with the temperature rise; 

however, it increases with the increase in both WHSV and molar ratio H2/C4. The 

presence of relatively small isobutane impurities in the inlet reaction mixture reduces 

its equilibrium yield in isomerization and the observed conversion of n-butane. 
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INCREASING THE EFFICIENCY OF THE HDS PROCESS BY THE 
MODIFICATION OF Ni/Mo/W HYDROTREATING CATALYST 

SUPPORTED ON MODIFIED SUPPORTS 

Khalidah Al-Dalama 

Kuwait Institute for Scientific Research (KISR), Kuwait, Kuwait 

Deep hydrodesulfurization (HDS) of petroleum-derived fuels has attracted much 

attention in recent years due to environmental requirements demanding significant 

improvement in sulfur elimination (Stanislaus et al., 2010). Catalysts consisting of 

molybdenum supported on ᵞ-alumina and promoted with Co or Ni are commonly used 

in the hydrotreating processes (Torielloa et al., 2015; Mendoza-Nieto 2013). Bulk 

unsupported trimetallic hydroprocessing catalysts has been developed for the 

production of ULSD, however, high metal content and low specific surface area are 

the principal disadvantages of bulk HDS catalysts. In general, different approaches 

have been followed to improve the performance of HDS catalysts. The objective of 

this research study was to find out the possibility of preparation of highly active 

supported trimetallic catalysts and to evaluate their effectiveness in 

hydrodesulfurization of refractory sulfur-containing compounds. 

To achieve this objective, a series of Mo and W-based catalysts with Ni 

promoters were preparedusing modified support materials (i.e. Al2O3, Z-Al2O3 and  

Ti-Z-Al2O3) and were characterized and tested in a microreactor for their HDS 

performance. Differences in catalytic activities due to changes in support may arise 

as a result of variations in metal–support interactions which in turn, may influence the 

dispersion and morphology of active components (Escobar et al., 2017; Magdaleno 

et al., 2014). 

The loading of catalytically active metals (Mo, W and Ni) into the support by wet 

impregnation is an important parameter that can significantly influence the activity of 

the catalyst and thus contribute to optimizing the productivity of the HDS process. 

The role of the support for the catalyst of the HDS process is also extremely 

important – as illustrated in Fig. 1, the catalysts on zeolite supports are the most 

active, and especially catalysts on Ti-Z-Al2O3
 support. 
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MODELING CO2 TO METHANOL CONVERSION IN A STAGNATION 
FLOW REACTOR 

Nawaf Alghamdi1, Anastasiya Bavykina2, Jorge Gascon2, S. Mani Sarathy2 
1King Abdullah University of Science and Technology (KAUST),  

Thuwal, Saudi Arabia, nawaf.alghamdi@kaust.edu.sa 
2King Abdullah University of Science and Technology (KAUST),  

Thuwal, Saudi Arabia 

Methanol is a critical building block for the production of many industrial 

chemicals. Instead of the traditional petroleum-based routes currently implemented to 

produce methanol, carbon dioxide presents a promising alternative as a feedstock if 

an approporiate catalyst is available. The catalytic conversion of carbon dioxide is, 

when fueled by renewable energy, a sustainable means of obtaining methanol. 

Typically, the ternary Cu-ZnO-Al2O3 catalyst is commercially used to obtain methanol 

from CO:CO2:H2 mixtures; however, however, when applied to the direct 

hydrogenation of CO2, this catalyst displays low methanol selectivity and poor 

stability. An alternative to the ternary catalyst is the indium oxide (In2O3) system 

proposed by Martin et al., which scores high in selectivity, activity and stability [1]. 

This study presents a model developed using CHEMKIN PRO to examine the 

performance of an indium oxide (In2O3) catalytic system in the stagnation flow reactor 

shown in Figure 1 [2]. The key concept behind the stagnation flow reactor is that the 

catalyst is coated on a disk inside a chamber (to control the pressure), in which the 

targeted gas flows and reacts on the 0-D catalytic surface [2]. The species profiles as 

a function of height above the catalytic bed are quantified via mass spectroscopy, 

which is obtained by a sampling probe that moves in one dimension perpendicular to 

the catalyst surface. Reducing the problem to one dimension is key in determining 

the reaction mechanism, which is of critical importance for reactor design and 

optimization purposes. 

The model developed predicts the profile of all species involved in CO2 

conversion to methanol at 573 K and 50 bar. Future work includes experimental 

validation, determining the mechanism of the CO2 conversion process, and 

optimizing the reactor design. 
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MEMBRANE FUEL CELLS WITH UNBALANCED PRESSURE 
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2Department of Chemical Engineering, Faculty of Engineering, Burapha University, 
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An alkaline anion exchange membrane fuel cell (AAEMFC) has been recently 

recognized as a promising electrochemical power generation and next generation of 

low temperature fuel cells [1]. It has the advantages in the terms of high 

electrochemical kinetics under the alkaline condition, possibility to use low cost non-

noble metal catalyst at the anode, flexible fuel usage and low fuel crossover [2]. 

Water transport is the important issue to keep the high performance of alkaline fuel 

cell. In contrast with proton exchange membrane fuel cells, the water (vapor phase) 

and oxygen are reactants in the cathode. At the anode, liquid water is produced and 

also transported from the cathode to anode due to electro osmotic drag mechanism. 

The systematic difference leads to the new challenge of water management. Too 

much water at the anode may cause pore flooding in the electrodes, thus leading to a 

higher mass transfer resistance of reactants. The control of water transport through 

the membrane at suitable rate is the important transport issue. Although water 

transport phenomena have a significant influence on the performance of alkaline 

anion exchange membrane fuel cells, there are a limited number of researches 

focusing on the water management within alkaline anion exchange membrane fuel 

cells [3]. It is found that the liquid water removal from the anode is necessary to 

prevent the flooding problem. The encouragement of water permeation or water back 

diffusion from the anode to cathode is the effective way not only to mitigate flooding 

problem but also to increase the oxygen relative humidity with the internal 

humidification concept. Therefore, the aims of this work focus on the improvement of 

alkaline anion exchange membrane fuel cells performance with water management. 
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In this work, the mathematical model of alkaline anion exchange membrane fuel cells 

is developed with the consideration of water transport inside the membrane and the 

flooding effect. The effect of operating conditions on the cell performance are 

analyzed when the unbalanced pressure operation are applied to enhance water 

back diffusion from anode side to cathode side. The direction of water transport of 

alkaline anion exchange membrane fuel cells at unbalanced pressure operation is 

present in Fig. 1. The effects of key operating parameters such as operating 

temperature, cathode relative humidity, anode relative humidity, cathode pressure, 

anode pressure on the cell performance will be analyzed. With this concept, the 

increasing of cathode relative humidity with the internal humidification concept and 

the reduction of flooding problem at the anode are observed. 

 
Fig. 1. Water transport of alkaline anion exchange membrane fuel cell at unbalanced pressure 

operation 

References 
[1] Iravaninia M., Azizia S., Rowshanzamir S. A comprehensive study on the stability and 

iontransport in cross-linked anion exchangemembranes based on polysulfone for solid alkalinefuel 
cells. International Journal of hydrogen energy, 2017, 42, 17229-17241. 

[2] Lan R., Tao S. Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel 
Cells. Journal of Power Sources, 2011, 196, 5021-5026. 

[3] Huo S., Park J.W., He P., Wang D., Jiao K. Analytical modeling of liquid saturation jump effect for 
hydrogen alkaline anion exchange membrane fuel cell. International Journal of Heat and Mass 
Transfer, 2017, 112, 891-902. 

Acknowledgements 
Support from Srinakharinwirot University is gratefully acknowledged. 

electro-osmotic drag 

membraneAnode Cathode

Water transport

pressure gradient

H2O

H2O

High pressure Low pressure

concentration gradient

electro-osmotic drag 

H2O



PP-5 

233 

CO2 REFORMING OF GLYCEROL OVER Rh-BASED CATALYSTS 
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Glycerol dry reforming (GDR) offers sustainable production of syngas since it 

consumes glycerol which is in excess due to increased biodiesel production and 

greenhouse gas, CO2. Low reactivity of CO2 and coke formation are the major 

drawback of the process, calling for the need of active and stable catalysts. Owing to 

the lack information on the catalysis of GDR in the literature, Rh/ZrO2 and Rh/CeO2 

are studied at GDR conditions and effects of temperature and CO2-to-glycerol ratio 

(CO2/G) on product distribution and reactant conversions are investigated.  
Rh/ZrO2 and Rh/CeO2 containing 1 wt. % Rh are prepared by incipient-to-

wetness impregnation and calcined at 800 °C for 4 h. Catalysts are reduced under H2 

flow at 800 °C prior to glycerol dry reforming tests for 2 h. Experiments are conducted 

in a quartz reactor involving 20 mg of catalyst. Residence time is kept constant at  

0.5 mg·min/Nml. Dosing of high purity (>99.5 %) glycerol and gaseous species (CO2 

and N2) are made by HPLC pump (Shimadzu LC-20AD) and mass flow controllers 

(Brooks 5850E), respectively. Glycerol conversion is calculated by elemental balance 

of H existing in gaseous species detected by gas chromatography. Molar inlet CO2/G 

and temperature are selected in the range of 1-4 and 600-750 °C, respectively. Fresh 

and spent catalysts are characterized by in-situ FTIR, Raman spectroscopy and 

TEM-EDX techniques to provide fundamental insight into the structural changes on 

the catalysts and mechanisms of activity loss. 

Temperature has a positive effect on the conversions of glycerol and CO2, and on 

product yields. While they exhibit glycerol conversions close to those of blank tests in 

the 600-700 °C range, both catalysts seem to function effectively between 700 and 

750 °C and are capable of converting up to ~80 % of the glycerol fed. A similar trend 

is observed for CO2 conversion which is found to be 13 % and 7 % on Rh/ZrO2 and 

Rh/CeO2, respectively, at 750 °C. Yields of species, especially that of H2, are found 

to increase with conversion. At a CO2/G = 1, both catalysts are shown to produce 

syngas with H2/CO exactly equal to 1. High temperatures also suppressed coke 

formation. 
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Glycerol conversion decreased from 91 % to 70 % on Rh/ZrO2, and from 88 % to 

64 % on Rh/CeO2 upon increasing CO2/G from 1 to 4. The same change in blank 

experiments, however, did not affect glycerol conversion that remained constant at 

~47 %. Negative correlation of catalytic glycerol conversion with CO2/G is possibly 

due to a competition between glycerol and CO2. Product distribution follows a 

monotonic trend of decreasing H2 and increasing CO yields at elevated CO2/G ratios, 

indicating the importance of reverse water-gas shift by which H2/CO ratio is reduced 

as a result of CO2 addition into the feed. Resulting increase in H2O is thought to 

trigger steam reforming CH4, whose yields are found to decrease with CO2/G. 

Response of CO2 conversion against change in CO2/G is different from that of 

glycerol. Between CO2/G of 1 and 2, CO2 conversion increases from 13 % to 23 %, 

and from 7 % to 16 % on Rh/ZrO2 and Rh/CeO2, respectively, but remains almost 

unchanged upon further increase in CO2/G. The trend on Rh/ZrO2 may be associated 

with sintering of Rh nanoparticles whose dimensions increase from ~1.5 to 4 nm, as 

detected by TEM-EDX studies. Sintering is believed to offset the increase in 

conversion by CO2 addition. This mechanism, however, seems not to exist on 

Rh/CeO2 which involves strong metal-support interaction, as verified by the in-situ 

FTIR and Raman characterization. The strong interaction, together with the improved 

oxygen transfer properties of CeO2, oxidizes surface carbon into CO2, which offsets 

its consumption to end up with unchanged CO2 conversions at CO2/G = 2-4. The 

strong interaction, however, encapsulates Rh sites on CeO2, causing CO2 and 

glycerol conversions to be less than those obtained on Rh/ZrO2. 

Stability test are conducted at 750 °C and CO2/G = 4 for 72 h. Despite its lower 

activity Rh/CeO2 remains more stable than Rh/ZrO2, whose activity loss is associated 

mainly with sintering and carbon deposition. The reduced strength of metal-support 

interaction in Rh/CeO2, which is verified by the FTIR studies, is thought to be the 

primary cause of its particular deactivation. Composition of syngas remains almost 

unchanged in the range of 0.6-0.7. 
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Сarbon dioxide separation from gas mixtures is critical process in several 

emerging energy-related industries, including in hydrogen production by means of 

biomass utilization and exhaust gas clean up. Some studies on this topic suggest 

using calcium-based sorbents for effective CO2 capture from gases because of 

potential advantages including: a wide range of operating temperatures; reduced 

energy penalties; the relatively inert nature of solid wastes. 

However, the use of CaO as a regenerable CO2 sorbent is limited by the rapid 

decay of the carbonation conversion with the number of carbonation/calcination 

cycles due sintering. 

The evolution of sorptive and textural properties of CaO-based sorbents during 

repetitive sorption/regeneration cycles has been mathematically simulated in this 

study. The proposed models takes into account the morphology of nascent CaO, 

sorbent sintering physics and CO2 sorption kinetics. The sintering was simulated 

under the assumptions: 

the sintering proceeds 

via the lattice diffusion 

mechanism (model a), 

that is characterized by 

the shrinkage, i.e. by 

reduction of the distance 

between the centers of sintered particles; via the surface diffusion mechanism (model 

b), that does not lead to shrinkage.  
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The results show that the volume sintering model  is in good agreement with the 

experimental data and predicts the dependence of the recarbonation extent and the 

value of the sorbent specific surface area on the number and duration of the 

sorption/regeneration cycles well (figure 1). 

Model (b) predicts the decay of the sorbent sorption capacity value from the initial 

to the final cycle only two times, but the real decay is more dramatic and the ratio 

attains the value of 4,5. Thus, computer modeling has shown that sintering of CaO 

sorbents occurs via the volume sintering mechanism or via a combined volume and 

surface sintering mechanism but not exclusively via the surface sintering mechanism.  
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Diesel fuel is one of the main commodity products of the oil refining industry. 
Modern diesel fuels are not straight-run products, it are obtained by blending straight-
run and hydrotreated diesel fractions and additives in the process of compounding. 
The need for compounding is due to the toughening of the requirements for the 
quality of diesel fuels. The cetane number, the most important operational 
characteristic of diesel fuel, is a non-additive characteristic and experimental 
determination of the cetane number is a multi-stage and labor-intensive process, 
which requires certain skills, special equipment, as well as time and money costs. 
According to [1], the cetane number for diesel fuel without additives can be 
calculated as a cetane index. For these reasons, development of a new calculation 
method for prediction of cetane index is relevant tasks [2-6]. 

In this work, the method for calculating the cetane index of blended diesel fuel 
taking into account the nonadditivity is presented. The cetane indices of the diesel 
fuels components were calculated according to the ISO 4264 “Petroleum products – 
Calculation of cetane index of middle-distillate fuels by the four-variable equation” [7] 
using the data from Russian industrial enterprise [8], the ratios of the blending 
components of diesel fuel (blending recipes) shows in Table 1. 

Table 1. The ratios of the blending components of diesel fuel 

Components 
Blends

1 2 3 4 
νi, wt. % 

Straight-run diesel fraction 0.40 0.40 0.37 0.40 
Kerosene fraction 0.12 0.00 0.00 0.00 
Hydrotreated diesel fraction 0.30 0.35 0.40 0.50 
Dewaxed diesel fraction 0.18 0.25 0.23 0.10 

To calculate the cetane index, the developed method uses the true boiling points 
(TBP) of the diesel fuel components obtained by recalculating the fractional 
composition [9]. The block diagram of the calculation procedure is shown in Figure 1. 

 
Figure 1. Block diagram of the methodology for calculating the cetane index,  

taking into account nonadditivity 
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The results of calculations using the developed methodology are shown in 

Table 2. Calculated values (CImix.met.) were compared with experimentally determined 

cetane indices of blends (CImix.exp.), as well as with cetane indices of blends, 

calculated according to the rule of additivity (CImix.add.). 
Table 2. Comparison of cetane indices calculated by different methods with  

experimental values 
Receipt CImix.exp. CImix.add. CImix.met. ∆add. ∆met. 

1 47 49 47 2 0 
2 49 50 48 1 1 
3 48 51 50 3 2 
4 50 52 49 2 1 

∆av. 2 1 

Thus, the developed method allows calculating the cetane index of blended 

diesel fuels with an average error (∆met.) not exceeding 1 point, while the calculation 

according to the rule of additivity (∆add.) has an average error of 2 points. 
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One of the important strategic directions for a number of countries in recent years 

has been the development of the Arctic and Antarctic. To overcome this challenge, it 

is urgent to provide technical equipment with high-quality, environmentally friendly 

fuels and lubricants, including diesel fuels that can be effectively operated at 

extremely cold temperatures typical for the Arctic regions. One of the most frequently 

used methods for providing low-temperature properties of diesel fuels is the use of 

additives to improve them. The choice of the type and necessary concentration of the 

additive is often empirically carried out, due to the lack of the universal technique for 

the use of low-temperature additives. This is justified by two factors: 

1) A wide range of additives on the market, with different active substances; 

2) The hydrocarbon composition of diesel fuels varies within fairly large limits, 

depending on the feedstock. 

Three samples of straight-run diesel fuel, obtained from various fields in Western 

Siberia, were chosen as the object of study. For the investigated samples of straight-

run diesel fuel (DF), the following characteristics were experimentally determined: 

fractional composition, density, viscosity, sulphur content, structural-group 

composition, cloud point, pour point, cold filter plugging point, and the cetane index 

was also calculated [1]. The results are shown in Table 1. 
Table 1. Characteristics of diesel fuel samples 

DF 
Sample 

Temperature, °С Density 
at 15 °С, 

kg/m3 

Viscosity 
at 20 °С, 
mm2/s 

Sulphur 
content, 

ppm 
CI, 

points 
Cloud 
point, 

°С 

Cold filter 
plugging 

point, 
°С 

Pour 
point, 

°С 
V, ml 

10 50 90 

1 189 248 338 832.0 3.8 2420 48.6 -15 -21 -35 

2 190 262 332 838.0 4.2 711 49.0 -12 -22 -32 

3 183 271 359 842.0 4.6 2517 48.6 -3 -4 -18 

For the study, three different low-temperature additives for diesel fuels were 

chosen, which were assigned ciphers A, B, C. Based on the manufacturer's 

recommendations, using the sample 3, the mixtures of straight-run diesel fuel with 

low-temperature additives were prepared. The effect of additives on the cold filter 

plugging point (CFPP) of fuel was investigated. The results are presented in Table 2. 
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Table 2. Influence of additives on cold filter plugging point of sample 3 

Additive CFPP 
pure sample, °С 

CFPP 
with additive, °С 

CFPP 
change, °С 

А 
-7 

-11 4 
В -8 1 
С -17 10 

From the results presented in Table 2 it can be seen that the use of additive C is 

the most effective. For further research, the mixtures of the fuel samples 1 and 2 with 

the additive C were prepared. The cold filter plugging point was also determined for 

the mixtures prepared. The results are presented in Table 3. 
Table 3. Influence of additive С on cold filter plugging point of diesel fuel samples 

DF 
Sample 

CFPP
pure sample, °С 

CFPP
with additive, °С 

CFPP 
change, °С 

1 -21 -32 11 

2 -22 -30 8 

3 -4 -17 13 

Thus, from the results presented in Table 3 it can be seen that the same additive 

at the same concentration has a different effect on the diesel fuel cold filter plugging 

point. Differences in the effectiveness of the additive can result from the effect of the 

composition of straight-run diesel fuel. In this study, the samples 1, 2 and 3 were 

investigated using the n-d-M method. The results are given in Table 4. 
Table 4. Results of n-d-M analysis of diesel fuel samples 

DF 
Sample 

Carbon distribution, wt. % 
Caromatic rings Cnaphthenic rings Cparaffin chains 

3 8.063 25.860 66.076 

4 13.229 41.242 45.529 

5 12.453 35.684 51.863 

The analysis showed that the greatest amount of carbon in all the samples is 

contained in paraffin chains, the smallest one is in aromatic rings. It cannot be 

unequivocally said about the effect of the distribution of carbon in hydrocarbon 

groups on the effectiveness of the action of the additive. However, based on the 

results of the studies, a direct relationship exists between the boiling point of 90 % by 

volume of the sample and the efficiency of the low-temperature additive, which may 

result from the accepted adsorption mechanism of additive action. 
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CATALYTIC HYDROGEN PRODUCTION AND PURIFICATION 

PROCESSES 
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The development of clean and eficient energy technology solutions has been 

considered one of the most important challenges facing scientific and technological 

research since the turn of the century. In this sense, designing unconventional 

microreactors to facilitate catalytical processes during the production and purification 

of hydrogen is a significant concern in addition to the miniaturization of equipment in 

the feedforward system of fuel batteries [1,2]. This is mainly due to the notable 

increase in mass and heat transfer coefficients as compared to conventional 

reactors. Additionally, the use of microgrids as microreactors, characterized by 

dimensions in the submillimeter range, provides higher surface/volume ratio  

(> 40,000 m2/m3) and offers a configuration that allows the generation of  

turbulent flow. 

The present work concerns with the preparation, characterisation and activity of 

microstructured reactors (microgrids type, Fig. 1) for the Preferential Oxidation of CO 

(COPROX) and the Water-Gas Shift (WGS) processes. Hydroxyapatite catalytic films 

will be deposited on these materials to enhance their textural and chemical properties 

before the impregnation of the active phase. The characterization involved BET,SEM, 

XRD, H2-TPR, UV-visible-NIR and XPS techniques. 

Experimental 
Several methods have been used for the washcoating of hydroxyapatite on 

ceramic and metallic monoliths. In the present study the deposition of hydroxyapatite 

film was carried out by using a modified version of the methods mentioned in the 

literature [1,2]. For the impregnation of the active phases (Cu, Pt, Pd) the 

HAP/SS316 support was dipped into a stirred aqueous solution of the corresponding 

salts for 2 h. Then, the samples were dried at room temperature for 2 h and at 120 °C 
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BIO-JET FUEL FROM THE HYDROPROCESSING OF JATROPHA OIL 
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The jatropha curcas L. oil is a potential feedstock for the production of biofuels. 

Among the different types of applications of biofuels, that of bio-jet fuel has been 

considered to be essential to reduce the carbon footprint in the aviation industry [1]. 

One the standardized procedures included in the specification ASTM D7566 for the 

manufacture of aviation fuels is the hydroprocessing of esters and fatty acids, also 

known as HEFA. The main products of this process are called synthesized paraffinic 

kerosine (SPK) and renewable (green) diesel. This process is carried out with the 

use of a bifunctional catalyst, and usually two reactors are employed. The current 

high production cost makes the HEFA process not economically viable, and therefore 

it is necessary to optimize the process to maximize the yield of jet fuel and green 

diesel. 

In this work, the optimal production of green diesel and bio-jet fuel (HEFA-SPK) 

from the hydrocracking of jatropha curcas L. oil was investigated through the 

simulation of the HEFA process. The simulation was carried out in ASPEN Plus®. 

Two reactors were considered in the process, one being the hydrotreating reactor of 

the triglycerides and free fatty acids contained in the jatropha oil to produce green 

diesel mainly, and a second one being the hydrocracking/hydroisomerization reactor 

to increase the production of hydrocarbons within the boiling point range of jet fuel, 

i.e. C8-C16 paraffins, including isomers to further reduce the freezing-point of the 

mixture.  

The first reactor was simulated by using the RYIELD model, where the yields of 

the different products were input according to experimental data obtained in a batch 

reactor, and using a jatropha oil variety from Yautepec, Mexico. The operative 

conditions of this reactor (pressure, temperature and type and amount of catalyst) 

were set from previous experience in experimental studies with jatropha oil [2-4]. On 

a NiMo/Al2O3 catalyst sulfided in-situ, the maximum yield of green diesel (C14-C22) 

was observed to be ca. 77 wt % at 80 bar and 350 °C, during three hours of 

residence time. This reactor was simulated using as thermodynamic method the 
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Non-random two-liquid (NRTL) model. The second reactor was simulated using the 

kinetic model reported by Calemma et al. [5] and using the Peng-Robinson equation 

of state as the thermodynamic method.  

The simulation predicts the product flow rates and the optimal conditions for the 

second reactor, at which it is possible to maximize the production of isoparaffins 

within the boiling point range of jet fuel, trying to comply with the above mentioned 

specification. The simulation of the reactors has been included in a more 

comprehensive plant scheme of the HEFA process, including the distillation columns, 

which has been used to further improve the conceptual design of the plant and study 

alternatives for integration and intensification of the process.  
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NTP ASSISTED SINGLE STEP METHANE CONVERSION TO 
METHANOL OVER Cu/-Al2O3 CATALYST MODIFIED BY ZnO, ZrO2 

AND MgO AS PROMOTERS  

Piu Chawdhury, Dheeraj Kumar, Ch. Subrahmanyam 

Department of Chemistry, Indian Institute of Technology Hyderabad,  
Telangana 502 285, India, E-mail: csubbu@iith.ac.in 

Partial oxidation of methane to methanol was carried out in a non-thermal DBD 

plasma (NTP-DBD) reactor, where air was used as the oxidizing agent. NTP 

condition was chosen as the reaction media to provide fast response. However, 

under ambient conditions, mere plasma suffers from poor energy efficiency and 

hence a suitable heterogeneous catalyst combination with plasma was explored to 

tap the synergy conditions due to catalyst action and uniform surface discharge. 

Moreover, plasma improves the stability of the combined system by reducing 

poisonig, coking and sintering of the catalysts.The influence of the reaction condition 

(power, CH4/Air mole ratio) and supported metal catalysts was investigated in terms 

of the conversion of the feed gases, selectivity and yield of the products and the 

energy efficiency of the plasma process. During the present study, Cu/-Al2O3 and 

modified metal oxides (ZnO, ZrO2 and MgO) catalysts were prepared by 

impregnation as the promoter modification leads to the high dispersion of the small 

metal particles over support material and hence improves the catalytic activity. The 

catalysts were characterized by PXRD, spectroscopy (Raman, Emission, XPS), BET, 

TGA, SEM and TEM to bring out the structure-function correlations and to notify the 

active species generated. Typical observations are as follows. 

 MgO promoted catalyst (CMgA) showed the maximum CH4 conversion of 

~11 %. 

 ZnO promotion yields the highest liquid product selectivity of ~50 % whereas 

ZrO2 promoted the CH3OH selectivity. 

 CMgA showed the best energy efficiency of ~1.1 kJ/mmol towards the 

greenhouse gas (CH4) conversion. 
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PREDICTIVE MODELING OF CATALYTIC CRACKING AND FUELS 
BLENDING TO INCREASE OF THE GASOLINE PRODUCTION 

ECONOMICAL EFFICIENCY BY REDUCING THE QUALITY 
GIVEAWAY 

Chuzlov V.A., Nazarova G.Y., Ivanchina E.D., Ivashkina E.N. 

National Research Tomsk Polytechnic University, Tomsk, Russia,  
E-mail: chuva@tpu.ru 

The complex research of catalytic cracking feedstock and product allowed 

creating the hydrocarbons conversions scheme as the mathematical model basis. 

Сharacteristics of pseudocomponents, thermodynamic and kinetic parameters of 

reactions at the heat equilibrium temperature between feedstock and catalyst  

(T = 810 K) are shown in Table 1. 
Table 1. Thermodynamic and kinetic parameters of catalytic cracking reactions 

Reactions rHº810 rGº810 Еа, kd (kin)** 
kJ/mol s–1, ls–1mol–1

Pr
im

ar
y 

Cracking of HMW paraffins  
Cracking of HMW paraffins to isoparaffin 
Dealkylation of HMW naphthenes  
Dealkylation of HMW aromatics  
Cracking of HMW naphthenes 
Cracking of CNAH 
Condensation of HMW aromatics 

64.7* 
65.3* 

100.8* 
134.0 
267.4* 
169.5* 
52.1* 

–70.3* 
–64.5* 

–191.5* 
–143.0* 
–138.5* 
–119.7 
–32.0* 

125.4 
123 
119 
132 
144 
132 
110 

0.14 s-1 
0.25 s-1 
0.15 s-1 
0.12 s-1 
0.19 s-1 
0.075 s-1 

0.08ls-1mol-1

Se
co

nd
ar

y 

Cracking of GF paraffins  
Isomerization of GF paraffins 
Cracking of GF isoparaffins 
Cracking of GF olefins 
Cracking of GF olefins to С4Н8+С4Н10 
Cracking of GF olefins to С3Н6+С3Н8 
Dealkylation of GF aromatics  
Cyclization of GF olefins  
GF Diene synthesis 
Hydrogen transfer between GF olefins and dienes 

between GF olefins and naphthenes 
Condensation of GF aromatics 
Coke formation 

77.5 
–4.5 
70.2 
88.2 
78.1 
77.8 
80.0 
–92.2 
–72.2 
–85.2* 
–169.3* 
–9.6* 
26.4* 

–36.6 
–1.5 

–40.2 
–22.3 
–35.3 
–36.1 
–17.3 
–25.1 

–106.9 
–40.2* 
–162.2* 
–47.2* 

–378.5* 

128 
130 
128 

160.6 
160.6 
160.6 
142 
132 
180 
132 
132 
110 
110 

0.11 s-1 
7.8·10-5 s-1 

0.04 s-1 
0.039 s-1 
0.04 s-1 

0.055 s-1 
0.01 s-1 
0.011 s-1 

0.12ls-1mol-1
2.5ls-1mol-1 
15.9ls-1mol-1
0.04ls-1mol-1
0.2ls-1mol-1 

*– quantum-chemical calculations results; HMW – paraffins C14÷C40+, mono- and bicyclic structures with long 
substituents (the average number of naphthenic and aromatic rings are 2.1÷2.3 and 2.3÷2.8 units); GF – paraffins, 
isoparaffins, olefins, naphthenes С5–С11+; aromatics – aromatics С6–С12+; CNAH – condensed naphthenic-
aromatic hydrocarbons. 
**– kd – rate constant of the direct reaction; kin – rate constant of the inverse reaction. 

The differences of the catalytic cracking feedstock characteristics have a 

significant effect on the product yield and the coke formation degree on the catalyst, 

along with operating parameters [1] of the catalytic cracking (Fig. 1). 
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Fig. 1. Gasoline and coke yield depending on the cracking temperature 

The change in the feedstock hydrocarbon composition and operating parameters 

of the catalytic cracking leads to the need for correction of the commercial gasoline 

recipes taking into account the volume and qualities changing of the catalytic 

cracking gasoline. 
Table 2. Qualities of catalytic cracking gasoline 

Parameter Gasoline fraction 130-EBRafter overalcalinity Gasoline fraction IBR-130
26.04.2017 27.04.2017 26.04.2017 27.04.2017 

RON 94.40 95.41 96.17 98.19
Aromatics, % 64.44 66.09 10.61 11.07
Sulfur, wt % 0.00 0.00 0.06 0.06

The possibility of the involving a larger amount of the 70-95 °C fraction for AI-92-

K-2 gasoline production is appeared (Table 3) due to increase of IBR-130 gasoline 

fraction RON (Table 2). 
Table 3. The calculation recipe of AI-92-K-2 gasoline 

Component 26.04.2017 27.04.2017 Parameter Value 
70-95 °С fraction 6.2 8.7 RON 92.01
Pentane-pentene fraction 2.9 2.8 MON 83.39
Butane-butylene fraction 2.1 2.1 Vapor pressure, kPa 81.15
C4 fraction raffinate 3.6 3.6 Density, kg/m3 713.14
Heavy reformate 22.0 22.0 Benzene content, % 0.80
Gasoline fraction 130-EBR after 
overalcalinity 1.3 1.3 Aromatic HC, % 23.80

Gasoline fraction IBR-130 62.0 59.5 Sulphur content, % 0.0374
TOTALS 100.0 100.0

Thus, the complex applying of catalytic cracking and fuels blending mathematical 

models allows to solve the problem of reducing the quality giveaway during the 

gasoline production of different grades. 
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In this work, we compare the effectiveness of microreactors fabricated from silica 

monoliths functionalised with zirconium species coordinated by propoxy ligands. 

Three monoliths with significantly different structure and porosity were applied as 

reactive cores (Fig. 1, Fig. 2a). The flow-through channels of microreactors were 

shaped by interconnected macropores of diameters c.a. 30 m, 10 m and 3 m. A 

large number of easily accessible catalytic centres was achieved due to the 

extensive network of mesopores present in the walls and struts of the silica carriers. 

The microreactors were studied in MPV reduction of cyclohexanone with 2-butanol. 

The experiments were performed in reactors of different length (1-8 cm) to obtain 

kinetic parameters. The significant impact of structure parameters on both, catalytic 

performance and flow characteristics was observed. 
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CATALYTIC HEAT EXCHANGER TYPE MEMBRANE REACTOR FOR 
CO2 HYDROGENATION: MODEL-BASED ANALYSIS AND 

FEASIBILITY ASSESSMENT 

Robert Currie and David S.A. Simakov 

Department of Chemical Engineering, University of Waterloo,  
Waterloo, ON N2L 3G1, Canada, dsimakov@uwaterloo.ca 

Converting CO2 into synthetic fuels is an attractive pathway to decrease CO2 

emissions and to reduce our dependence on fossil fuels. Thermocatalytic 

hydrogenation provides advantages of fast reaction rates and high conversion 

efficiencies, thus allowing for compact, high-throughput operation [1]. The most 

fundamental disadvantage is the requirement to supply a pure H2 stream. Water 

electrolysis is a possibility (using renewable electricity), but this technology requires 

high capital and operation costs. This study assesses the feasibility of using H2-

containing renewable streams (e.g., biomass gasification gases) as a source of H2 for 

the thermocatalytic CO2 conversion into renewable natural gas via the Sabatier 

process (CO2 + 4H2 = CH4 + 2H2O). This process is highly exothermic and thermal 

management is a major drawback as efficient heat removal is required to drive CH4 

formation and suppress catalyst deactivation by carbon deposition [2, 3]. Herein, it is 

suggested to use a H2-selective membrane to extract H2 from a H2-containing stream 

in situ, supplying H2 along the catalytic bed in a distributed manner. 

 
Figure 1. Schematic of the 

molten salt-cooled membrane 
Sabatier reactor 

Figure 2. Simulated temperature (left) and mole fraction profiles 
(right) obtained after 2,000 h simulated time-on-stream  

(P = 10 bar; Tf = 750 K; Tf,MS = 550 K; SV = 110 1/h) 

A dynamic, non-isothermal model of the actively-cooled membrane reactor 

(Figure 1) was formulated and investigated via numerical simulations (Figure 2). The 

model accounts for the heat exchange between the reaction compartment and the 

cooling tubes, for the mass exchange through the H2-selective membrane, as well as 

for catalyst deactivation. 
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Figure 3. Simulated temporal evolution of CO2 conversion and CH4 selectivity (upper panels) and 

spatiotemporal profiles of the catalyst activity (lower panels) for the non-membrane  
(a) and membrane (b) operation 

Typical temperature and mole fraction profiles are shown in Figure 2: Due to the 

distributed H2 supply, CO2 is gradually consumed, avoiding the hot spot formation in 

the catalytic bed and preventing CO formation. The outlet stream consists of CH4, 

H2O, and H2. Comparison between the non-membrane and membrane cases is 

shown in Figure 3. Without the membrane (Fig. 3a), the model predicts severe 

deactivation with 70 % conversion drop after 2,000 h. When the membrane is 

introduced (Fig. 3b), no significant deactivation is observed even after 10,000 h 

(same CO2 feed rate). Corresponding spatiotemporal profiles of the catalyst activity 

clearly demonstrate that the distributed H2 supply suppresses the catalyst 

deactivation. Using the comprehensive model and numerical simulations, it has been 

demonstrated that the distributed H2 supply through a membrane suppresses catalyst 

deactivation by coking in the Sabatier reactor. 
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THE PROCESS DEVELOPMENT OF BAYERITE PREPARATION 
BY SELF-HYDROLYSIS OF ALUMINUM CHLORIDE  

HEXAHYDRATE IN BATCH REACTOR 

Dobrynkin N., Batygina M., Noskov A. 

Boreskov Institute of Catalysis SB RAS,  
Pr. Ak. Lavrentieva, 5, Novosibirsk, 630005, Russia 

dbn@catalysis.ru, dobrynkin_nik@mail.ru 

At present, alkaline technologies are used for the production of alumina from 

high-siliceous raw materials, mainly kaolinic. The proposed promising technologies 

based on acidic methods of processing kaolins and clays using sulfuric, hydrochloric 

and nitric acids are multi-stage and high-cost. 

A feasibility study of aluminum chloride hydrothermal decomposition has been 

carried out for developing an ecologically safe integrated technology for obtaining 

alumina from high-silica raw materials and replacing the existing energy-consuming 

multi-stage high-temperature methods of aluminum chloride decomposition. 

The advantages of the hydrothermal process for Al-O-H products production are: 

1. One-step process;

2. Low power consumption;

3. Chemical and phase purity of the product;

4. Low level of aggregation;

5. The ability to control the size, morphology and structure;

6. The possibility of using this method for high-silica raw materials.

Our earlier studies of hydrothermal co-hydrolysis of aqueous solutions of 

aluminum chloride hexahydrate and carbamide showed the possibility of aluminum 

hydroxide (boehmite) synthesis with a yield of up to 99 % and with a chloride ion 

content 1.06 % in the dried up to constant mass boehmite. Carbamide was used as 

an additional component to accelerate the hydrolysis of aluminum chloride. 

The resulting boehmite is of interest for various applications (catalysis, 

nanofiltration, aluminum production, etc.). However, for the creation of large tonnage 

processes (more than 10 million tons of alumina per year [3]), non-waste and 

reagent-free technologies are of particular interest. 

In the present work, the process of aluminum oxyhydroxides obtaining by self-

hydrolysis of aluminum chloride hexahydrate with the use of crystalline water is 

considered for the first time: 
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NUMERICAL SIMULATION OF BENZENE WITH ETHYLENE 
ALKYLATION CONSIDERING CATALYST DEACTIVATION 

Dolganov I., Khlebnikova E., Dolganova I., Ivashkina E. 

Tomsk Polytechnic University, Tomsk, Russia, dolganovim@tpu.ru 

Ethylbenzene is the key intermediate in styrene production, which is one of the 

most important industrial monomers. Despite the fact that the benzene alkylation 

process for ethylbenzene production has undergone significant improvements, all of 

them concern alkylation on zeolite catalysts. However, liquid acidic catalysts are still 

used and need to be improved.  

In contrast to alkylation modeling and surveys on zeolite catalysts [1], there is 

much less information about approaches to improve and simulate the liquid acid-

catalyzed units. In addition, all the existing mathematical models are steady and do 

not consider the catalyst deactivation. At the same time, the catalyst activity 

determines the product yield and quality, and its change modeling can become the 

instrument to its forecasting and regulation [2]. Previously, we have performed the 

research concerning the feasibility of mixing device reconstruction in order to 

intensify the reactants mixing during the AlCl3 alkylation [3], without mathematical 

modeling of the alkylation. Now we intend to concentrate on improving the alkylation 

reactor performance with use of the developed computer modeling system 

considering the process unsteadiness 

During the development of a mathematical model, the kinetic parameters [4] of 

the reactions found using quantum chemistry methods were refined using data from 

an operating industrial installation. Defined preexponential factor in the Arrhenius 

equation and activation energies of all the reactions were chosen in the solution of 

the inverse kinetic problem. 

To solve the inverse kinetic problem, we used the experimental values of the 

substance concentrations at the inlet and outlet of the alkylator, and finally we 

estimated the kinetic parameters that provide minimal deviation between calculated 

and experimental data.  

The present research investigates the possibility of obtaining this goal by 

developing the unsteady mathematical model considering the catalyst deactivation by 

heavy alkylaromatics. The reaction network is designed with due consideration of the 

desired and side reactions along with deactivating agents’ formation and reflects the 
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influence of the heavy hydrocarbons concentration on the catalyst activity. Decrease 

of the ethylbenzene concentration by 2-3 % wt. and increase of the polyalkylate 

outlet concentration by 1.5-2 % wt. stem from the catalyst deactivation. This can be 

compensated by the polyalkylate supply increasing to the reactor by 1.3 times and 

the temperature increasing up to 398 K. The performed calculations show that it is 

possible to decrease the fresh catalyst supply from 0.498 to 0.472 t/hour without 

losses in the ethylbenzene yield. 
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Multistage industrial production of alkyl benzene sulfonic acid along with Pt and 

Ni catalysts use toxic catalysts based on aluminum chloride and HF. The object of 

the study is an industrial unit for synthesizing linear alkyl benzene sulphonic acid 

(ASA), including the stages of paraffins dehydrogenation, diolefins hydrogenation, 

alkylation of benzene with olefins, sulfonation of linear alkylbenzenes. 

The efficiency of this industrial plant operation depends on the following factors: 

 Technological regimes (dehydrogenation temperature, Pt catalyst activity, Ni 

catalyst activity (controlled by dimethyl disulfide DMDS consumption), HF 

catalyst activity) 

 The composition of the feedstock – paraffins (the content of light aromatic 

compounds, which can be converted to unsaturated aromatic compounds 

during alkylation and high-viscosity homologues of tetraline during 

sulfonation). 

To establish kinetic regularities and prognostic models of technological stages, 

we conducted the industrial experiment from October 7, 2017 to October 18, 2017 

(Tab. 1). 
Tab. 1. Industrial experiment calendar 

Date Conditions  Range Experiment results 
07.08-
08.08 

DMDS flow rate 
Hydrogenation temperature 

1.5-2 ppm 
191-188 °С 

Output diolefins concentration:  
0.1 wt. %  

09.10-
14.10 

Temperature increase  
Hydrogen gaze flow rate 
DMDS concentration 

188-194 °C 
40-41,3 th. m3/h  
2-6 ppm. 

The concentration of diolefins 
increased from to 0.2 wt. % 

15.10-
18.10 

Temperature increase  
Hydrogen gaze flow rate 
DMDS concentration 

194-197 °C  
41,3-45 th. m3/h  
6-2,3 ppm. 

The concentration of diolefins 
decreased back from 0.2 to 0.1 wt. % 

The developed prognostic models of dehydrogenation hydrogenation, alkylation 

and sulfonation processes for the ASA synthesis considering the technological links 

between the devices, allow determining and changing the modes at any stage of 

ASA production with the changing composition of the raw materials. The results of 

the experiment are compared with calculations on mathematical models, Tab. 2. 
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Tab. 2. Adequacy of the mathematical models during the industrial experiment  

 

Olefines after 
deh. (calc.)  

wt. % 

Olefines 
after deh. 

(exp.)  
wt. % 

Diolefines 
after deh. 

(calc.)  
wt. % 

Diolefines 
after deh. 

(exp.)  
wt. % 

Diolefines 
after hyd. 

(calc.)  
wt. % 

Diolefines 
after hyd. 

(exp.)  
wt. % 

07.10.17 8.01 8.2 0.58 0.6 0.06 0.1 
08.10.17 8.37 8.3 0.61 0.6 0.12 0.1 
10.10.17 8.4 8.48 0.53 0.54 0.16 0.18 
11.10.17 8.44 8.44 0.56 0.56 0.17 0.17 
14.10.17 8.45 8.31 0.6 0.58 0.24 0.21 
15.10.17 8.11 8.11 0.58 0.58 0.21 0.21 
16.10.17 8.27 8.06 0.59 0.56 0.16 0.14 

According to data presented in Tab. 2, during the industrial experiment, the 

calculated and experimental data on such key parameters as the content of olefins 

and diolefins after the dehydrogenation and hydrogenation reactors are in good 

agreement. This, in turn, allows using the developed mathematical models to 

recommend optimal regimes at the subsequent technological stages - alkylation and 

sulfonation, considering the heavy aromatic compounds formed (Fig. 1). 

 

Fig. 1. Results of optimization calculations using mathematical models 

From Fig. 2 it stems that in order to achieve the maximum ASA production 

efficiency, the alkylation and sulfonation regimes must be combined with the 

dehydrogenation and hydrogenation regimes. Considering the change in the 

concentration of diolefins after dehydrogenation and hydrogenation reactor (Tab. 2), 

performed with the use of the adequate mathematical models of technologically 

coupled stages, allows correcting the HF flow rate to regenerator and amount of 

sulfur to be burned. 
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As the existing renewable energy sources (i.e. wind power, solar energy, hydro- 

and geo-energy) are suitable for the production of electricity, the problem of the 

proper alternative to the fossil liquid fuel remains one of the major problems. 

Nowadays, the use of liquid fuel accounts a half of the total energy consumption. 

Thus, the modern tendencies in the production of alternative ecologically clean fuels 

are focused on the biomass conversion processes [1]. The main vegetable biomass 

components are cellulose, hemicelluloses, lignin, triglycerides etc. As the biomass 

contains the compounds with a different structure, it can be a source to obtain 

different fuel components as well as various bulk materials [2]. Among the processes 

used for the biomass conversion, hydrogenolysis [3-5], hydrodeoxygenation [6, 7] 

and hydrogenation [8-10] are the most studied in last decades. In the current work, 

we report the use of catalysts based on the noble metals impregnated in the 

polymeric matrix of the hypercrosslinked polystyrene (HPS) in the processes of 

lignocellulosic biomass conversion into the fuel components.  

HPS-based catalysts were synthesized via conventional wet-impregnation method 

according to the procedure described elsewhere [11] upon variation of the HPS type 

(MN100 or MN270). Ruthenium (IV) hydroxochloride (Ru(OH)Cl3) was used as a 

metal precursor for the catalyst synthesis. The resulted catalysts were reduced with 

hydrogen at 300 °С for 2 hours. The catalysts were characterized by the TEM, XPS, 

XFA, TGA and low-temperature nitrogen physisorption. The processes of biomass 

conversion were studied using the model compounds such as alkali lignin, cellulose, 

levulinic acid. All the experiments were carried out in high-pressure stainless steel 

batch reactor (50 cm3, Parr Instrument, USA) under the hydrogen atmosphere in a 

water medium. The analysis of the reaction products was performed by HPLC. 

The results of the catalysts characterization are presented in Table 1. It was 

shown that the use of the polymeric matrix of HPS allows formation of small 
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nanoparticles in the pores of the support. The mean particle size was found to be 

less than 5 nm. It is noteworthy that the presence of amino groups in the polymer 

structure allows decreasing particle size by 3 times.  
Table 1. The results of catalyst characterization 

Sample 

Surface area 
Ru particle 

size, nm 
Ru content 
calculated 
by XFA, % 

Ru state Langmuir BET t-plot 

SL,a m2/g SBET,b m2/g St
c, m2/g 

HPS-MN-270 1500 1420 295d
, 1140e - - - 

HPS-MN-100 840 730 200d, 590e - - - 
3%-Ru/HPS-MN-270 1270 1180 250d, 990e 4.3 ± 0.7 2.8 RuO2 
3%-Ru/HPS-MN-100 890 740 195d, 600e 1.2 ± 0.2 2.9 RuO2 

Testing of synthesized Ru/HPS samples in the processes of cellulose 

hydrogenolysis, hydrogenation of levulinic acid and hydrogenolysis of lignin showed 

that the activity of the catalyst based on non-functionalized HPS-MN270 was in 1.5-

2 times lower than the activity of the catalyst based on HPS containing amino groups 

HPS-MN100 in all the studied processes. The high efficiency of the catalyst is 

connected with the combination of the high specific surface area; narrow pore size 

distribution, and small monodisperse Ru nanoparticles as well as the presence of the 

additional acid-base active sites providing by the presence of amino groups. 
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The chemical industry is one of the main consumers of natural gas. Natural gas 

used for producing hydrogen, ammonia, methanol, acetylene, higher alcohols, etc. 

[1]. Hydrogen is the main intermediate product in the production of ammonia, 

methanol, synthetic fuels, with deep oil refining and the production of high-octane 

motor fuel. H2 also used in the pharmaceutical, metallurgy, aviation and other 

industries [2]. There are several methods of catalytic methane conversion to 

synthesis gas and hydrogen – steam reforming [3], partial oxidation [4], carbon 

dioxide conversion [5], combined oxidation, etc. [6]. 

The concepts of combined methane oxidation for the production of hydrogen, 

which is a synergistic combination of steam and carbon dioxide reforming with partial 

oxidation of methane on one catalyst and on a single reactor, have been developed 

in recent years [7]. 

In this paper the effect of the ratio of the initial reagent (CH4, CO2, O2, H2O) was 

studied to produce hydrogen on a nickel-containing catalyst supported on alumina. 

Experiments on testing the efficiency of catalysts were carried out on an 

automated flow-through catalytic unit (PKU-1). The reaction products were identified 

chromatographically on a "CHROMOS GX-1000" instrument using the absolute 

calibration method and thermal conductivity detectors. 

The table gives data on the effect of the ratio CH4: CO2: O2: H2O on the process 

of tri-reforming of methane on a 3 % NiO – 1 % MoO3 / -Al2O3 catalyst at a reaction 

temperature of 850 °C and a space velocity of 1000 h–1. 

From the results presented in the Table it is seen that a change in the ratio of 

components in the initial reaction mixture leads to a slight change in methane 

conversion, but it significantly affects the conversion of carbon dioxide and hydrogen 

concentrations.  
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Table 1. Influence of the ratio CH4: CO2: O2: H2O of the initial reaction mixture on the 
direction of the process 

Ratio СН4:СО2:О2:Н2О ХСН4, % ХСО2, % СН2, vol. % 

2 : 2 : 1 : 0.5 98.0 81.0 52.0 

2 :1 : 1 : 1 97.0 79.5 53.0 

2 : 1 : 0.5 : 1 98.0 90.0 59.0 

1 : 0.5 : 0.1 : 1 99.0 86.0 52.8 

3 : 1 : 0.5 : 1 96.0 62.0 56.2 

The optimal ratio of the initial components is the composition CH4: CO2: O2: H2O 

= 2 : 1 : 0.5 : 1. At this reagent ratio, the vapors of water and oxygen are converted 

completely, and the greatest conversions of CH4 = 98 % and CO2 = 90 % and the 

concentration of the formed H2-59 vol. %. 

Thus, under the reaction conditions (CH4 : CO2 : O2 : H2O = 2 : 1 : 0.5 : 1, Tr = 

850 °C and W = 1000 h–1) on the promoted 3 % NiO – 1 % MoO3 / -Al2O3 catalyst 

the hydrogen concentration is reached up to 59 % by volume, with the conversion of 

methane 98 % and carbon dioxide 90 %.  
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The petrochemical industry faces the challenge to meet the growing demand of 

automotive fuels and the increasing environmental restrictions. In this sense, the 

oligomerization of light olefins (ethene, propene and butene) is becoming an 

attractive alternative to produce environmental friendly liquid fuels, free of sulfur and 

aromatics [1], since olefinic raw materials can be obtained from sources alternative to 

oil, such as methanol and DME, via MTO and DTO processes [2]. Furthermore, the 

demand of butenes has decreased due to the lower production of MtBE, which gives 

way to the valorization of this olefinic stream into high demanded liquid fuels. 

Olefin oligomerization implies a complex reaction mechanism where catalyst 

properties and reaction conditions will affect the polymerization degree, levels of 

branched chain and the proportion of gasoline and diesel in product distribution. In 

order to contribute to a better understanding of this reaction mechanism, in this work 

HZSM-5 zeolites of different SiO2/Al2O3 ratio have been studied in a wide range of 

operating conditions (pressure and temperature) with the aim of maximizing gasoline 

(C5-C11) and diesel (C12-C20) selectivity and yield. Special attention has been paid to 

the stability of the catalyst, since the attenuation of coke deactivation is a key factor 

for the process viability. 

The catalysts studied are based on HZSM-5 zeolites (supplied by Zeolyst Int.) 

with different SiO2/Al2O3 ratio (30-280). Zeolites have been agglomerated with 

pseudobohemite (30 wt. %) as binder and -alumina (20 wt. %) as inert charge, 

which confers a matrix with meso-and macropore structure to the catalyst. Fresh and 

deactivated catalysts were characterized by N2 adsorption-desorption, DSC-TPD of 

ammonia and FTIR of pyridine. The coke content deposited on the catalysts was 

determined by TPO. 

Runs were performed in an isothermal fixed bed reactor under the following 

conditions: pressure, 1.5-40 bar; temperature, 250-275 °C; 1-butene partial pressure 

70 %; space time 2-6 (g of catalyst h)·(mol CH2)–1; time on stream, 10-20 h. Gas 

products were analyzed on-line in a gas chromatograph (Micro-GC Agilent 3000A), 
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and the liquids obtained during the reaction were analyzed by GC x GC and  by 

Simulated Distillation (SIMDIST).  

As an example of the results obtained, Figure 1a shows the effect of SiO2/Al2O3 

ratio on 1-butene conversion and product yield at 1.5 bar and 275 °C (graph a) and at 

40 bar and 250 °C (graph b). In general terms, gasoline yield is favored at low 

pressures, whereas jet fuel and diesel production is enhanced at high pressures and 

mild temperatures. It should be noted that catalyst acidity plays an important role in 

the oligomerization of 1-butene: an increase in SiO2/Al2O3 ratio entails a decrease in 

1-butene conversion and consequently a decrease in diesel and gasoline selectivity. 

HZ-30 shows the best performance in the wide range of operating conditions studied 

maintaining a high catalyts activity after 20 h of TOS. 
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Figure 1. (a) Evolution of 1-butene conversion and product selectivity with SiO2/Al2O3 ratio at zero 

time on stream (275 °C, 1.5 bar). (b) Evolution with time on stream of 1-butene conversion and diesel 
and gasoline yield on HZSM-5 catalysts (250 °C, 40 bar) 
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Among the non-destructive testing methods for corrosion monitoring [1-4] are 

scanning reflectometry, confocal microscopy, optical microscopy, ultrasonic 

inspection, laser scanning microscopy, acoustic emission, vibration analysis, etc. 

Due to the ease of monitoring, visual inspection is still employed Due to the ease of 

monitoring, visual inspection is still employed with satisfactory results because it 

informs about the type and extent of the corrosion. Due to the ease of monitoring, 

visual inspection is still employed because it informs about the type and level of the 

corrosion. However, visual inspection has subjective criteria. 

The most part of the works connected with detection of corrosion effects by 

methods of computer vision analyzes cracks and pittings. Studying of pitting 

corrosion of stainless steel in FeCl3 solution became one of the initial experience with 

computer vision for the metals corrosion research [5]. In [6] other method of metal 

corrosion identification based on a minimum distance between the recognition 

objects is presented. 

The study of corrosion processes using computer vision methods involves four 

interconnected processes that create the prerequisites for the creation of data-

processing system: 

1. Accumulation of experimental data (corroded surface images), which require 

ordering, structuring and classification for correct use when solving the 

problem of classifier training. 

2. Development of information processing methods depending on the type of 

problem being solved. In this case, it is the use of image processing methods, 

mathematical statistics and fractal analysis to evaluate and predict corrosion 

processes for various types of metals (steel, iron and aluminum). 

3. Updating the technical means of processing information, increasing the 

calculations speed (using graphics processors). 
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4. Implementation of automatic systems of scientific research in the form of 

software packages and training of the end user (researcher). 

These operations are specific to each problem of computer vision. Development 

and use of the models suitable for the effective solution of a object detection and 

recognition problems, substantially remains on the verge of science and art. The 

solution of this problem requires a special know-how or, in other words, knowledge of 

subject domain reflecting long-term experience of a research on the solution of 

specific tasks. In more detail this task is considered in work [7]. 

In this paper, we study the results obtained with the help of the created 

information-computational analytical system (ICAS) for estimating and predicting 

corrosion (“CorOcenka”). The main results based on the use of ICAS are listed. 

The paper considers the main aspects of image processing and analysis in the 

studying the corrosion damage mechanism: 

• The computer vision and image processing in the problem of detecting 

bubbles on the aluminum surface are developed; 

• The general regularity of corrosion data processing on a aluminum surface is 

defined; 

• The described algorithms are used for detection and recognition of corrosion 

damage for an aluminum sample by observing the intensity of hydrogen 

bubbles formation; 

• The trained classifier was successfully applied to study several experiments of 

corrosion on the aluminum surface. 
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Light olefin (ethylene and butenes) interconversion is a process with a growing 

interest for adjusting each olefin production to the market requirements. The current 

increasing demand for propylene is boosting the implementation of new processes, 

as are propane dehydrogenation, metathesis, selective olefin cracking, and methanol 

to propylene (MTP), among others [1]. This work explores the transformation of  

1-butene, as it is also formed in the catalytic processes for light olefin production, of 

lower demand than ethylene and propylene due to the decrease in methyl-tert-buthyl 

ether (MtBE). To improve the propylene selectivity it is helpful to develop a kinetic 

model for light olefin interconversion, which takes place over acid catalysts by the 

classical mechanism of oligomerization-cracking. In our previous work [2] a zero-time 

kinetic model of five lumps (ethylene, propylene, butenes, C1-4 paraffins and C5+ 

hydrocarbons including aromatics) was established for the transformation of 1-butene 

on a HZSM-5 zeolite catalyst (SiO2/Al2O3 ratio of 280) modified with 1 wt % of K (of 

moderate acidity). The model was able to predict a product distribution that fits the 

experimental results in a wide range of operating conditions: 400-600 °C, space time 

up to 1.6 gcatalyst (h molCH2)–1 and 1-butene partial pressure, 0.375-1.35 bar. The aim 

of this current work is to complement the zero-time kinetic model by proposing a 

kinetic equation for the catalyst deactivation by coke deposition, in order to correctly 

simulate the reactor and to better understand the initial stages of catalyst 

deactivation in the transformation of 1-butene.  

The methodology for the kinetic study assumed that all the catalytic reactions of 

the kinetic scheme were equally affected by the decrease in catalyst activity (i.e., 

non-selective deactivation model). The proposed kinetic equations of deactivation 

and the kinetic parameters are summarized in Table 1. Discrimination of equations 

and the calculation of the best-fit kinetic parameters was carried out by multiple 

nonlinear regressions in a calculation program in MATLAB. This program solves the 

kinetic equations of deactivation together with the mass balances of all the 

compounds of the reaction scheme [3]. 
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Table 1. Proposed kinetic equations of deactivation and best-fit kinetic parameters 

Model Deactivation equation kd1 kd2 Ea1 Ea2 

MD1 ppppk
dt
da

C5C2C4C3d1    0.082 - 41.88 - 

MD2 ppkppk
dt
da

C5C2d2C4C3d1    0.017 0.648 44.77 53.88 

where a is the activity, kd, deactivation kinetic constant, pi, partial pressure of compound i (atm), and, 
Ea, activation energy (kJ mol–1). 

The analysis of variances demostrated that the best-fit kinetic equation of 

deactivation is the one proposed in MD2, where ethylene and C5+ hydrocarbons have 

a higher contribution to catalyst deactivation in comparison to propylene and 

butenes. In addition, as shown in Figure 1, the proposed equations adequately 

predicts the influence of reaction temperature and space-time on the catalyst 

deactivation. 
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Figure 1. Comparison of experimental values (points) with those calculated using the kinetic model 

including catalyst deactivation (lines) at different operating conditions 
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PYROLYSIS OF A MIXTURE OF MONOSILANE AND ALKANES IN A 
COMPRESSION REACTOR TO PRODUCE NANODISPERSED 

SILICON CARBIDE 

Ezdin B.S.1, Kalyada V.V.1, Ichshenko A.V.1, Zarvin A.E.1,  
Nikiforov A.A.1, Snytnikov P.1,2 
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The development of new approaches to the design of electronic components with 

high performance characteristics is accompanied by the search for nanoscale 

materials with unique physicochemical properties. Silicon carbides as functional 

materials are interesting initially, however, despite the large number of works, the 

problem of obtaining nanosized silicon carbide with the required parameters in terms 

of purity, dispersion, productivity and other characteristics remains relevant. 

There are a number of methods for obtaining nanoscale silicon carbide: sol-gel 

method [1], laser pyrolysis [2], self-propagating high-temperature synthesis [3], 

plasma chemical method [4], adiabatic compression method [5]. The disadvantage of 

these methods is low productivity, the difficulty of scaling and the need to use 

expensive unique equipment, as a result of which the cost of nanoscale powders 

increases.  

In the proposed method for obtaining nanodispersed silicon carbide for pyrolysis 

of initial reagents-a mixture of gases SiH4, Ar and light hydrocarbons, a cyclic 

compression method is used in the volume of a chemical reactor. The chemical 

compression reactor used is described quite fully in [6-7]. 

The composition of the reaction gas mixture was kept close to the stoichiometric, 

various light hydrocarbons were used – pentane, a mixture of pentane and butane, 

etc. The passage of the SiC synthesis reaction was monitored on-line using a 

universal gas analyzer UGA-200. The samples were characterized by HRTEM 

electron microscope JEM-2010, equipped with EDS spectrometer «QUANTAX 200-

TEM» for local elemental analysis. In Fig. 1 shows typical electron-microscopic 

images of the morphology and structure of the obtained samples Dimensions silicon 

carbide particles are in the range 10-40 nm. The observed interplanar distances 

correspond to silicon carbide from the RFA database. 
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THE STUDY OF COKE FORMATION IN MODELING THE 
DEHYDROGENATION OF HYDROCARBONS C9-C14 

Frantsina E.V., Ivanchina E.D., Ivashkina E.N., Belinskaya N.S., Fefelova K.O. 

Tomsk Polytechnic University, Tomsk, Russia, evf@tpu.ru 

The process of dehydrogenation of C9-C14 hydrocarbons allows the production 

of olefins used for the production of linear alkylbenzenes. One of the factors reducing 

the concentration of the desired product is the deactivation of the catalyst resulting 

from the formation of coke on its surface. The process of coke formation is affected 

not only by the technological parameters of the process (temperature regime, 

pressure, molar ratio of hydrogen / feedstock), but also by the structure of the 

catalyst. The aim of the work was to evaluate the influence of technological 

parameters and the type of dehydrogenation catalyst on the coke structure for 

describing the coke formation process in modeling the dehydrogenation of C9-C14 

hydrocarbons. Five commodity cycles were considered (Table 1). 
Table 1. Basic parameters of feed cycles 

Cycle Duration, 
days Catalyst Т, С Р, МPа l Olefin yield, 

% wt. 
Coke, 
% wt. 

Water, 
l / h 

1 32 КД-1 472-495 0,2 7/1 8,68 6,41 9,0 
2 243 КД-2 468-487 0,19 7/1 8,71 2,53 9,0 
3 280 КД-3 469-487 0,19 7/1 8,77 0,8 4,0-9,0 

4 384 КД-3 469-487 0,18-0,20 
7/1; 

7,5/1; 
8/1 

8,65 0,89 4,0-9,0 

5 432 КД-3 470-489 0,17-0,19 7/1; 6/1 8,82 1,51 4,0-14,0 

The analysis of the working cycles of dehydrogenation catalysts showed that the 

greatest amount of coke is formed on the surface of catalysts of grades KD-1 and 

KD-2 in comparison with KD-3, which is caused by different catalyst structure and 

technological regimes. This is primarily due to a decrease in pressure in the reactor 

(cycles CD-2 and CD-3), as well as with a lower molar ratio (cycle 5). The decrease 

in pressure and the molar ratio promotes a shift in the equilibrium of the 

dehydrogenation reaction towards the formation of the desired product.  

To determine the structure of coke formed as a result of the feedstock cycle, a 

thermogravimetric analysis of five catalyst samples was carried out (Table 2). From 

the thermograms obtained it was found that only coke of amorphous nature was 

formed on all catalysts (the H / C ratio should be in the range 0.2-2.0), as evidenced 

by the peak of the heat flux in the temperature range (450-660 °C). 
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Table 2. Thermal effect of combustion reactions of amorphous coke 
Cycle 1 2 3 4 5 
Catalyst KD-1 KD-2 KD-3 KD-4 KD-5 
Burning temperature, °С 189,6 194,31 192 392 384,5 
Thermal effect, J/g 20168 10764 10140 548,5 1335 

Earlier, the authors of [1] found that the ratio of H / C is 0.5 and the resulting coke 

has a hexagonal coronene structure, which was used in describing the coke 

formation in the model of the dehydrogenation of C9-C14 hydrocarbons. 

To determine the H / C ratio, a thermodynamic analysis of the combustion 

reactions of carbon and hydrogen was carried out at the start of combustion of 

amorphous coke, provided that the number of carbon atoms in the coke molecule 

remains equal to 28 (Table 3). 
Table 3. H/C ratio in the coke molecule 

Cycle 1 2 3 4 5 
Catalyst KD-1 KD-2 KD-3 KD-4 KD-5 
n1 (H) 17,61 16,94 16,03 14,23 14,34 
n2 (C) 28 28 28 28 28 
Molar Rate Н/С (n1/n2) 0,63 0,61 0,60 0,51 0,51 

The results of the calculation confirmed that the coke formed on the surface of 

the catalysts is of an amorphous nature, and the change in the H / C ratio in different 

cycles is related to the technological modes of operation and the composition of the 

catalysts of the grades. 
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TRANSPORT PHENOMENA IN RVC FOAMS 

Anna Gancarczyk, Katarzyna Sindera, Marzena Iwaniszyn,  
Mateusz Korpyś, Andrzej Kołodziej 

Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland, 
anna.g@iich.gliwice.pl 

Reticulated Vitreous Carbon (RVC) foams have many interesting properties like 

high thermal and electric conductivity, low density and thermal expansion, very good 

resistance to many corrosive media, high operating temperature (up to 3500 °C in 

inert environment), high porosity and specific surface area. RVC foams can be 

applied in numerous processes playing role of structured catalyst (biocatalyst) 

carrier, structure enhancing heat (mass) transfer, structured 3D electrode [1, 2]. 

Application to the above processes requires however knowledge of the 

morphological parameters (porosity, specific surface area), as well as the heat, mass 

and momentum transfer characteristics, which determination is the aim of this work. 

The tests were done for three RVC foams (ERG Materials and Aerospace Corp.) 

of different pore density. The basic morphological parameters (Fig. 1A) were 

determined by micro-computed tomography and optical microscopy and are 

presented in Table 1. 
Table 1. Morphological parameters of the RVC foams studied 

Parameter RVC 30 PPI RVC 80 PPI RVC 100 PPI 
inner (skeleton) porosity, εin [%] 0.38 0.51 0.36 

cell diameter, dc [mm] 3.08 0.58 0.56 

window diameter, dw [mm] 1.16 0.23 0.22 
strut diameter, ds [mm] 0.307 0.054 0.047 

open (external) porosity, ε [%] 96 96 96 
specific surface area, Sv [m2/m3] 1223 3557 4154 

 
Flow resistance (Fig. 1B) and heat transfer (Fig. 1C) were determined. While the 

flow resistance, P/H, increase with the PPI number (i.e. when decreasing the cell, 

window and strut dimensions) the Nusselt number, Nu, is almost the same for all the 

foams tested, i.e. independent of the foams’ skeleton dimensions.  

Based on the transport characteristics, the governing flow mechanism through 

foam samples was determined. Two possible flow mechanisms were considered, 

namely flow around an immersed solid body (foam struts) modelled as sphere or 

cylinder and developing laminar flow in a short capillary channel (foam cell). The best 

agreement was found for the flow around a sphere with diameter equal to the strut 
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A REACTION-DIFFUSION MODEL FOR BRIDGING BETWEEN 
ZEOLITES AND CATALYST PELLETS IN MTO PROCESS 

Mingbin Gao1,2, Hua Li1, Mao Ye1*, Zhongmin Liu1 
1Dalian National Laboratory for Clean Energy, National Engineering Laboratory for 
MTO, Dalian Institute of Chemical Physics, Chinese Academy of Science, No.457 

Zhongshan Road, Dalian 116023, China, *Corresponding author: maoye@dicp.ac.cn 
2University of Chinese Academy of Sciences, No.19 Yuquan Road, Beijing 10049, 

China 

Methanol-to-olefins (MTO) has received considerable attention since 1970s due 
to its importance in the production of light olefins from resources other than oil. 
Despite significant progress in fundamental research in the past decades, a recent 
milestone is that in 2010 the world’s first commercial MTO unit based on the fluidized 
bed reactor-regenerator configuration was successfully commissioned in north China 
[1]. This stimulated the rapid development of coal to chemicals industry in China.  

In commercial MTO units, catalyst pellets used is exclusively based on SAPO-34 
zeolites. As shown in Figure 1(A), MTO catalyst pellets are comprised of SAPO-34 
zeolites (micro-pores) and agglomerate, which results in different pore sizes. In the 
present study, we first compared the reaction results between SAPO-34 zeolites and 
catalyst pellets. Notably, as can be seen from Figure 1(B), under equal acid amount 
conditions, the catalytic lifetime of catalyst pellets is observably longer than SAPO-34 
zeolites. Considering in the catalyst pellets, agglomerate consists of meso-pores and 
macro-pores, where the bulk diffusion combined with Knudsen diffusion dominate [2]. 
Obviously, the modeling approach capable of addressing the effect of macro/meso-
pores on discrepancies of reaction results between catalyst pellets and zeolites 
remains a non-trivial task, and is the goal of this manuscript.  

In our reaction-diffusion model, the reaction kinetics was based on the dual-cycle 
mechanism based on SAPO-34 zeolites [3] while the diffusion was modeled by 
Maxwell-Stefan equation. The diffusion coefficients for methanol and major product 
over SAPO-34 zeolites and catalyst pellets were first measured under relatively low 
temperature range through sorption kinetics method by use of IGA. The MTO 
reaction experiments were carried out in fixed-bed quartz tubular reactor.  

Figure 1(C) compared the diffusion coefficients of methanol between SAPO-34 
zeolites and catalyst pellets. Due to the macro/meso-pores in catalyst pellets, the 
diffusion coefficients of methanol in catalyst pellets is almost 10 times faster than in 
SAPO-34 zeolites. Based on the diffusion coefficients and reaction results over 
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SYNTHESIS OF MEMBRANE CATALYSTS BASED ON 
MESOPOROUS SUPPORT FOR DRY REFORMING OF METHANE 

Gavrilova N.N., Myachina M.A., Ardashev D.V., Nazarov V.V., Skudin V.V. 

Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
ngavrilova@muctr.ru 

The dry reforming of methane belongs to the most promising methods for natural 

gas processing. In a number of studies it was found that the implementation of this 

reaction in a membrane reactor with the use of porous membrane catalysts makes it 

possible to increase the degree of conversion, the selectivity and the rate of process. 

Intensification of a number of catalytic processes in porous membrane catalysts 

is explained by the peculiarities of gas transport in a porous medium and, in 

particular, by the appearance of the Knudsen diffusion regime. The appearance of 

this type of mass transfer, in general, depends on the reaction conditions 

(temperature and pressure) and porous structure of the membrane catalyst. 

The goal of this work was to obtain membrane catalysts with the required 

architecture and a porous structure that would ensure the emergence of Knudsen 

diffusion regime. 

In this paper, we present the results of the sol-gel synthesis of membrane 

catalysts Mo2C/Al2O3 and the investigation of their catalytic activity in the reaction of 

dry reforming of methane.  

Membrane catalysts were synthesized on the basis of tubular microfiltration 

elements (substrate) made off electrocorundum (-Al2O3). An additional layer was 

applied to microfiltration membranes by the filtration of a boehmite suspension; by 

heat treatment this layer was converted into a layer of porous Al2O3, which 

possesses a high specific surface area and a mesopore structure.  

A stable dispersion of molybdenum blue was used as a dispersion system to 

create a catalytic layer. The catalytic layer was applied by dip-coating, then the 

samples were dried and heat treated.  

Synthesized samples of membrane catalyst with different pore size distribution 

were studied in the reaction of dry reforming of methane. The reaction was carried 

out in a flow-through membrane catalytic reactor. 

It was found that the membrane catalysts Mo2C/Al2O3 exhibited catalytic activity 

in this reaction starting at a temperature of 800 °C. With elevating temperature, the 
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conversion and yield of products are improved. The reaction products were hydrogen 

(H2) and carbon monoxide (CO). According to the chromatographic analysis, no other 

reaction products, including other hydrocarbons (C2+), were detected. 

In a series of samples with a different pore size distribution, an increase in the 

conversion degree is observed with the elevation of the specific surface area and 

pore size decrease in the samples. The sample, which has the narrowest pore size 

distribution and the smallest mean diameter, has the greatest catalytic activity. The 

rate constants and the specific catalytic activity are presented in Table 1. 

The probability of the Knudsen transport regime in the pores can be estimated 

from the value of the Knudsen number (Kn), which characterizes the ratio of the 

mean free path of molecules to the characteristic pore size (for example, to the mean 

diameter). It is generally assumed that for Kn>10 a free-molecular flow or Knudsen 

diffusion is observed. 

The values of Knudsen numbers calculated for the test samples of supports and 

membrane catalysts are shown in Table 1. As can be seen the free-molecular flow 

should be observed in -Al2O3/-Al2O3 support samples, because Knudsen numbers 

exceed 10. For other support samples, a transient transport mode should be 

expected. 
Table 1. Rate constants of the methane conversion and Knudsen numbers for the 

membrane catalysts at a temperature of 850 °C 

Sample 
Parameter 

Mo2C/ 
-Al2O3/-Al2O3 

Mo2C/ 
-Al2O3/-Al2O3 

Mo2C/ 
-Al2O3/-Al2O3 

k, 1/s 1,65 0,31 0,27 
km, 1/s·g 41,3 7,8 6,7 
ks, 1/s·m2 0,46 0,11 0,28 
Kn (support) 13 8 6 
Kn (membrane catalyst) 27 25 21 
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ON THE DEVELOPMENT OF HIGHLY-ACTIVE Ni-BASED 
CATALYSTS FOR CO2 METHANATION: EFFECTS OF THE 

SUPPORT AND ACTIVATION TEMPERATURE 

González-Rangulan V.V.*, Reyero I., Moral A., Bimbela F., Gandía L.M. 

Grupo de Reactores Químicos y Procesos para la Valorización de Recursos 
Renovables, Institute for Advanced Materials (InaMat), Universidad Pública de 
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Introduction 
One of the most interesting alternatives to valorize CO2 and avoid greenhouse 

gas emissions is catalytic hydrogenation to methane or methanation using Ni 

catalysts. Supported Ni catalysts having different metal-support interactions can 

show very distinct performances in the CO2 methanation, thus markedly affecting 

their activity, stability and selectivity toward CH4 production. Therefore, the choice of 

an adequate support as well as the conditions (mainly temperature) of the activation 

of the catalyst through reduction to obtain metallic nickel can play a crucial role on 

the ensuing catalytic performance. CeO2, TiO2 and Al2O3 are interesting supports of 

Ni to be used in the catalytic hydrogenation of CO2 because of their different 

characteristics regarding textural, acid-base and redox properties. The aim of the 

present work is to develop Ni catalysts for CO2 hydrogenation using CeO2, TiO2 and 

Al2O3 as supports and to study the effect of the catalysts’ reduction temperature on 

their performance. 

Experimental 

Five Ni catalysts were prepared using the following commercial supports: -Al2O3 

(Alfa Aesar), CeO2 (Merck, CeO2-M and Tecnan-Lurederra, CeO2-L), and TiO2 

(Evonik P-25, TiO2-E and Tecnan-Lurederra, TiO2-L). The catalysts were prepared 

through wetness impregnation with a metal loading of 15 wt. %. All supports were 

calcined before the impregnation step at 500 °C for 4 h in a muffle furnace under 

flowing air. After the impregnation and drying, the catalysts were calcined again at 

the same conditions. The catalysts were characterized by N2 adsorption/desorption, 

temperature programmed reduction (TPR), X-ray diffraction (XRD) and CO pulse 

chemisorption. The evaluation of the catalytic activity was carried out at 400 °C and 

atmospheric pressure in a laboratory tubular fixed-bed quartz reactor using a feed 

composed of N2, CO2 and H2 with a H2/CO2 molar ratio equal to 4 and a spatial 
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velocity of 12 L N CO2/(gcat.h). Previously, the catalysts were reduced in situ for 3 h 

under H2 flow at different temperatures between 350 and 500 °C. 

Results and discussion 
Fig. 1 shows the evolution of 

CO2 conversion over the reaction 

time in the catalytic tests carried out 

at 400 °C using the different catalyts 

previously reduced at 350, 400 and 

500 °C. It can be observed that 

decreasing the temperature in the 

reduction step from 500 °C can lead 

to a notable increase of the activity 

of the catalysts supported on CeO2 

and TiO2. The CO2 conversions 

increased from values ranging between 59-65 % up to values comprised between 80 

and 85 % in the following order: TiO2-L < TiO2-E < Al2O3 < CeO2-L < CeO2-M. 

Adopting Al2O3 as reference support, ceria allowed to obtain more active catalysts 

whereas the performance of the titania-supported ones was worse. It can be 

highlighted that both Ni/CeO2 (M and L) catalysts yielded stable CO2 conversions 

throughout at the studied reaction conditions, around 80 % or even higher regardless 

of the reduction temperature evaluated. Methane and CO were the only reaction 

products detected with selectivities to methane between 82 and 90 %. 

Conclusions 
The supported Ni catalysts displayed very stable performances in the 

hydrogenation of CO2 at 400 °C yielding high CO2 conversions in the case of the 

Ni/CeO2 solids when the reduction temperature was lowered to 350 °C. This 

behaviour is being investigated and seems to be related with the reducible character 

of ceria an titania and the influence of the reduction temperature on the metal-

support interactions. 

Acknowledgements 
Centro Tecnológico Lurederra and TECNAN (Los Arcos, Navarra, Spain) are greatly 

acknowledged for kindly supplying CeO2 and TiO2 supports. The Spanish Ministerio de Economía y 
Competitividad (MINECO) and the European Regional Development Fund (ERDF/FEDER) are 
acknowledged for the financial support (prj. ref. ENE2015-66975-C3). The Universidad Pública de 
Navarra is also thanked for the Post-doc and PhD grants awarded to I. Reyero and V.V. González-
Rangulan, respectively. 

Figure 1. Evolution of the CO2 conversion over time 
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AERODYNAMIC CFD SIMULATIONS OF EXPERIMENTAL AND 
INDUSTRIAL THERMAL FLOW REVERSAL REACTORS 

Krzysztof Gosiewski, Anna Pawlaczyk-Kurek 

Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland  

Experiments (cf. [1]) were carried out on the research & demonstration reactor at 

a gas apparent velocity of ca. 0.57 mSTP\s flowing through the honeycomb monolith 

packing with the square 3×3 mm channels. However, next experiments revealed, that 

combustion of a lean methane-air mixture as in coal mine ventillation air in this case, 

may be satisfactory carried out when this velocity would be even about 50 % higher. 

Practically, the only limiting factor is the cost and energy consumption necessary for 

pumping the gas through the reactor. Therefore, the flow resistance in the reactor 

becomes very important for the further reactor design in a larger industrial scale. 

For aerodynamic analysis of such a problem the CFD simulations appear to be 

an appropriate tool. The ANSYS FLUENT simulations presented in the paper were 

divided into the two following stages: 

A. Development of a simulation method which could couple simplified CFD 

simulations by using the results of separately performed calculations obtained 

from the model [1], based on partial differential equations of the mass and 

energy balances with own thermal combustion kinetics [2]. The aerodynamic 

model was verified by comparing CFD simulation results with the experimental 

records taken from the research & demonstration plant [1]. The simulations 

revealed acceptable accordance with experimental results what shows that 

the model may be useful in practice. This stage was aimed to get reliability of 

further, forecasted results for an industrial plant in a larger size scale. 

B. CFD simulations for currently being designed industrial flow reversal reactor 

with use the flow resistance coefficients obtained and verified during 

simulations of the experimental reactor aerodynamic model, referred to in 

point A. 

Thus the aim of the present study was to obtain a reliable model for a reactor 

which is currently going to be implemented in a coal mine. Moreover, the model was 

to be used to compare the designed versions of geometry from the point of view of 

expected pressure drop of future plant, and also from the point of view of 

homogeneity of the distribution of the flow velocity in cross-section of the reactor 
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A PENALIZATION METHOD FOR THE DIRECT NUMERICAL 
SIMULATION OF LOW-MACH REACTING GAS-SOLID FLOWS 

Hardy B.1, Winckelmans G.2, De Wilde J.3 
1Materials & Process Engineering (IMAP), Institute of Mechanics, Materials and  

Civil Engineering (iMMC), Université Catholique de Louvain (UCL),  
Louvain-la-Neuve, Belgium, baptiste.hardy@uclouvain.be 

2Thermodynamics and Fluid Mechanics (TFL), iMMC, UCL,  
Louvain-la-Neuve, Belgium 

3IMAP, iMMC, UCL, Louvain-la-Neuve, Belgium 

Gas-solid flows are encountered in a variety of natural phenomena and industrial 

applications. Fluidized bed reactors are widely used in the chemical industry as they 

allow continuous solids processing and high mass and heat transfer rates. The 

simulation of industrial scale fluidized bed reactors remains challenging with billions 

of solid particles in motion in the reactor. In the past decades, different approaches 

have been developed to model complex multi-scale and multi-phase reacting flows. 

The Two-Fluid Model (TFM), which describes both the gas and the solid phases as 

continua, is currently very popular due to its relatively low computational cost. The 

Discrete Element Model (CFD-DEM) or its coarse-grained version in which each 

particle, respectively group of particles, is tracked in a Lagrangian manner has 

gained attention in recent years due to the increased computational power and 

parallel processing capabilities. However, both TFM and DEM type models depend 

on closure laws for interfacial mass, heat and momentum transfer. Direct Numerical 

Simulation (DNS) turns out to be a powerful tool for extracting closure laws starting 

from the fundamental principles for mass, momentum and heat transfer. 

In recent years, different DNS methodologies for particle-resolved simulations 

have been investigated, mostly based on the Immersed Boundary Method (IBM) 

originally developed by Peskin [1]. The direct forcing method introduced by Mohd-

Yusof [2] and later improved by Uhlmann [3] allows a better numerical treatment of 

rigid body problems and is therefore very popular in the fields of particulate flows. 

DNS-IBM was then applied by several research groups to predict fluid-particle mass, 

momentum and heat transfer rates [4]–[8]. 

Among immersed boundary methods, the penalization method developed by 

Arquis and Caltagirone [9] models solid obstacles as porous media with close to zero 

porosity. Originally used for fluid-structure interaction, this method has been scarcely 
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investigated for the study of heat and mass transfer problems in reactive gas-solid 

flows.  

The present study combines the penalization method to account for the presence 

of the solid phase with the low-Mach number assumption for the gas phase. Indeed, 

strong thermal effects induced by chemical reactions can induce non-negligible 

density gradients at the surface of solid particles and affect interfacial transfer laws. 

The low-Mach number assumption is of high interest for gas-solid reactive flows in 

that it allows density fluctuations while removing the constraint on the time step 

imposed by the speed of sound in fully compressible flows. Here, we extend the 

methodology of Lessani et al. [10] for low-Mach number flows in order to incorporate 

the penalization of the solid phase for momentum, heat and species transport. 

Different reaction scenarios are investigated: heat consumption/production and gas 

expansion/compression. Finally, a comparison is established with the incompressible 

version of the penalization method to assess the impact of density fluctuations in 

view of building new closure laws for gas-solid flows. 
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NUMERICAL STUDY ON EFFECTS OF BUILT-IN IMPEDIMENTS IN 
AN ANAEROBIC FLUIDIZED BED MEMBRANE REACTOR FOR 

FOULING MITIGATION 

Daniel Hirche1,2, Olaf Hinrichsen1,2 
1Technical University of Munich, Department of Chemistry,  

Lichtenbergstraße 4, 85748 Garching b. München, Germany 
2Technical University of Munich, Catalysis Research Center,  

Ernst-Otto-Fischer-Straße 1, 85748 Garching b. München, Germany 
E-mail: daniel.hirche@ch.tum.de 

Wastewater treatment of both municipal and industrial wastewaters via anaerobic 

fluidized membrane bioreactors (AnFMBR) has attracted recent attention in literature 

[1]. The main issue of conventional membrane bioreactors is the occurring fouling 

and hence energy intensive removing or fouling mitigation. Cui et al. [2] showed that 

in conventional membrane bioreactors a non-negligible amount of fouling mitigation 

is due to water shear. Another approach to increase the in-situ fouling mitigation is to 

introduce inert particles into the membrane bioreactors and induce a fluidized bed.  

Recent work on fouling mitigation 

in a fluidized membrane bioreactor 

with inert granular activated carbon 

(GAC) particles [3, 4] showed 

hydrodynamic correlations of different 

particle sizes and feed velocities 

towards the resulting fouling mitigation. 

It was apparent that increasing particle 

momentum has a positive effect on 

fouling mitigation. In the following work 

the AnFMBR according to [3] is 

simulated with a coupled CFD-DEM 

approach using the open-source 

package OpenFOAM® version 4.1. 

After validation of the simulations with experimental results, the geometry is modified 

in respect of implementing impediments. The concept of additional impediments is to 

modify the water velocity at certain heights of the AnFMBR due to change of the 

cross section and hence the particle velocities and particle concentrations change as 

Figure 1. Schematic side view of geometry without 
(left) and with a built-in impediment length of 5 mm 
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well. As a first modification approach the impediments consist of simple prisms with 

different lengths l. The impediment height h is in accordance to the maximum height 

of the active membrane and equals to 154 mm, while the total height of the geometry 

is 194 mm. The impediment length l is varied between 1, 3, 5 and 7 mm. Figure 1 

illustrates the side view of the geometry without and with an impediment length of 

5 mm. 

The particle diameters investigated range from 1.05 mm to 2.05 mm. The feed 

velocity is varied between the 3-fold and 11-fold of the minimum fluidization velocity. 

Figure 2 illustrates the particle momentum for selected particle diameters and 

impediment lengths in terms of required power input. 

A maximum for the 

particle momentum exists 

for every particle size and 

impediment-length. The 

highest particle momentum 

in terms of all impediment 

heights is reached for 

particle diameters of 1.55 

and 1.85 mm. Built-in 

impediments do not 

increase the particle 

momentum, but shift the 

maximum for the particle 

momentum towards a lower required power input. Therefore, built-in impediments are 

suitable for force sensitive or fragile membrane surfaces as the impediments lower 

the maximum reachable particle momentum while at the same time lowering the 

required power input by a higher degree than without built-in impediments. 
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Figure 2. Particle momentum of fluidized bed with particle 
diameter of 1.25, 1.55 and 1.85 mm for AnFMBR’s with no 
impediment (0 mm) and built-in impediment lengths of 1, 3,  

and 5 mm with required power input 
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MAGNETICALLY CONTROLLED OXIDATIVE CRACKING OF FUEL 
OIL TO PRODUCE LIGHT PETROLEUM PRODUCTS 

Ibrasheva R.Kh., Yemelyanova V.S., Dossumova B.T., Shakiyev E.M., 
Baizhomartov B.B., Shakiyeva T.V. 

"Scientific and Production Technical Center "Zhalyn" LLP,  
Almaty, Republic of Kazakhstan, E-mail: niinhtm@mail.ru 

The shortage of explored reserves and production of light oils observed in recent 

decades has caused the intensification of research and the search for new 

approaches in the processing of residual high-boiling fractions. Involving in 

processing only 10 % of oil residues, which are still used as boiler fuel, is equivalent 

to the production of 50-60 million tons of oil per year [1].  

Fuel oil, which contains in heavy oils, is up to 50 % and higher, and a significant 

proportion is used to produce boiler fuel or raw materials for the production of 

bitumen and coke, is the main reserve for deepening oil refining [1]. 

The main obstacle to the processing of fuel oil in catalytic cracking (FCC) 

installations is the increased coking ability of raw materials and an increased content 

of metals, mainly nickel and vanadium [2]. 

The need to create low-cost technology contributed to the development under the 

leadership of Doctor of Chemical Sciences, Professor R.Kh. Ibrasheva innovation 

process of oxidative cracking of fuel oil in the presence of cheap catalysts from 

Kazakhstan's natural zeolites, zeolites derived from fly ash from TPPs and clays in 

the presence of ferromagnetic catalysts. 

The activating effect of microquantities of oxygen is proved by a 20-25 wt. % 

decrease in the yield of the gas oil fraction during cracking on the same catalysts in 

an inert atmosphere. Under the influence of oxygen, only the initiation of hydrocarbon 

molecules occurs, and the radical chain reactions of their destruction take place on 

the active surface of the optimal catalysts, as evidenced by the fact that when the 

catalyst is removed from the reaction medium, the oxidative cracking of fuel oil 

ceases. These results are fundamentally new and, in contrast to previous studies, 

show that in the absence of a catalyst, the activation of the thermal cracking process 

by the oxygen in the air of residual oil fractions does not occur. 

According to Chromatography-mass-spectrometry analysis, the composition of 

light gas oils obtained during oxidative cracking of fuel oils on optimal composites 
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includes hydrocarbons with carbon number from C10 to C25, with alkanes and alkenes 

C10-C19 predominated, which are contained in equimolar amounts. This is evidence of 

their formation due to the symmetric decomposition of C20-C38 hydrocarbons. 

Consequently, in the presence of ferromagnetic catalysts attached to 

aluminosilicates, the destruction of hydrocarbons occurs at the place with the lowest 

energy of the carbon–carbon bond, i.e. in the middle of the hydrocarbon chain. As a 

result of homolytic symmetric splitting of high molecular weight hydrocarbons in the 

products of cracking of fuel oil, middle distillate fractions predominate. 

The effect of a constant magnetic field "fixes" a new structure of hydrocarbon 

systems, characterized by greater homogeneity and paramagnetic activity, lower 

viscosity and surface tension. 

The duration of this structure is from several tens of minutes to several hours. 

This time is sufficient for the creation of favorable conditions for the flow of physico-

chemical processes in the processing of petroleum raw materials. 
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FORMATION OF THE COMPONENT COMPOSITION OF BLENDED 
HYDROCARBON FUELS AS THE PROBLEM OF THE MULTIOBJECT 

OPTIMIZATION 

Ivanchina E.D.1, Ivashkina E.N.1, Chuzlov V.A.1,  
Belinskaya N.S.1, Dementyev A.Y.2 

1Tomsk Polytechnic University, Tomsk, Russia, ied@tpu.ru 
2PJSC “KINEF”, Tomsk, Russia 

The problem of energy efficiency has always been the most significant in the 

economy. Its solution is related to the technologies of many industries. The most 

significant are the reserves of energy efficiency of the use of hydrocarbon fuels, 

which are observed at all stages of production of high-energy hydrocarbon fuels. This 

is largely due to the extensive scientific search for alternative energy sources and 

stagnation in the conduct of search and fundamental studies of the processes of 

producing motor fuels from hydrocarbon raw materials. 

Theoretical bases of modeling of unsteady multicomponent catalytic processes of 

deep refining of hydrocarbon raw materials, such as hydrotreating of diesel fractions, 

dewaxing of atmospheric gas oil, catalytic cracking and hydrocracking of vacuum gas 

oil, are developed. A new energy-efficient technology for the production of high-

energy, low-freezing hydrocarbon fuels for the Arctic was created by solving the 

problem of multi-object optimization. 

In the process of fuel production, not taking into account the chemical interaction 

between the individual components of the mixture (hydrocarbon streams and 

additives) leads to a divergence of the physicochemical properties of the calculated 

and experimentally determined ones. The principal consequences of this are: 

a) deterioration in the quality of products – commercial fuels; b) decrease in 

economic indicators due to over-expenditure of expensive additives used in 

compounding. With large volumes of commercial output, economic indicators can 

reach a significant level. Calculation of the recipe for motor fuels is carried out based 

on the parameters and properties of the mixing components that are used to produce 

a certain batch. This will reduce the risks of producing off-specs products, and also 

save expensive additives. 

The resource vector of mixing components (flow rate) is limited by production 

capabilities, the flows ratio is determined by the the State Standard (GOST) 

requirements for fuels. 
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The following requirements are considered as the basic: 

– for gasolines: density, fractional composition, sulfur content, the content of 

aromatic hydrocarbons, including benzene, olefins, saturated vapor pressure, motor 

and research octane numbers; 

– for diesel fuels: density, sulfur content, fractional composition, cetane number, 

kinematic viscosity, cloud point, cold filter plugging point, pour point, flash point; 

– for boiler fuels: density, viscosity, flash point and pour point. 

To establish the correlation between the quality of the obtained mixture and the 

quantitative and qualitative characteristics of the mixing components, it is necessary 

to solve the problem of multicriteria optimization. 

In the process of optimization, there are many conflicting requirements for the 

commercial product. The values of some indicators need to be increased, while 

others should be reduced at the same time. The problem is complicated by the fact 

that these indicators are not independent. They are interrelated, interdependent, and 

the increase of some indicators leads to a decrease in others. The search for the 

optimal solution is connected with finding a reasonable compromise in the conditions 

of presented contradictory requirements. 

To find a compromise solution, the notion of an ideal value for all the particular 

components of i is introduced. Then the efficiency criterion will be written as follows: 
2

, .

1 mini

i идеал




 
   
 
   

The values of the optimized parameters X1, X2, … X12, providing min i, will be a 

compromise. 

To conduct a complete qualitative and quantitative analysis of the efficiency of the 

blending process, it is necessary to see the interrelationship between production and 

operating modes of the plants, their influence on the productivity of the blending 

process. In this case, recommendations for changing recipes to improve the 

effectiveness of the mixing stage will be correct and fully justified. 

To determine the volume and quality of the added streams to the off-specs 

volume of products in order to meet the requirements for the final product, it is 

required to create a software connection with databases used at the refineries. 
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METAL OXIDES FORMATION ON Pt/Al2O3 AND Pd/Al2O3 
CATALYSTS AND ITS IMPACT ON NO OXIDATION 

Kočí P., Boutikos P., Březina J., Pečinka R., Hnátková A., Šourek M., Plachá M. 

University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, 
Czech Republic, Tel.: +420220443293, e-mail: petr.koci@vscht.cz 

Current diesel exhaust aftertreatment systems consist of a diesel oxidation 

catalyst (DOC) for CO and hydrocarbon oxidation, a deNOx catalyst for reduction of 

nitrogen oxides (either lean NOx trap – LNT, or selective catalytic reduction – SCR), 

and a diesel particulate filter (DPF). The NOx reduction efficiency depends on 

NO2/NOx ratio in the exhaust gas. NO2 adsorbs in a significantly greater extent than 

NO in LNT, and the NO2/NOx ratio of 1/2 enables the fast SCR reaction. NO oxidation 

in DOC located in front of the deNOx catalysts therefore significantly affects the 

overall function of the combined aftertreatment system. 

Diesel oxidation catalysts are based on Pt or Pt-Pd nanoparticles supported by 

Al2O3 and/or CeO2. However, in highly oxidative atmosphere of the diesel exhaust 

gas, noble metal oxides formation is thermodynamically favored and the metal oxides 

show a lower catalytic activity for NO oxidation. Optimum design and control of the 

combined DOC–deNOx aftertreatment system therefore relies on the understanding 

and quantification of metal oxides formation and its impact on NO oxidation rate, 

depending on both actual operating conditions and history of the catalyst [1,2]. 

In this contribution we aim on the elucidation of metal oxides formation effects on 

Pt/Al2O3 and Pd/Al2O3 catalysts, focusing on similarities and differences between the 

two catalyst formulations. Series of isothermal deactivation experiments was 

performed as well as heat-up and cool-down temperature ramps showing inverse 

hysteresis of NO2 yield due to metal oxide formation on the catalyst surface (Figure 
1). Prior to each experiment, the catalyst was reduced in hydrogen to obtain fully 

reduced initial state of the catalyst. A global kinetic model of DOC is developed, 

considering NO oxidation rate dependence on the fraction of Pt or Pd sites in the 

form of metal oxides [1]. The model includes gradual oxidation of metal sites by NO2 

and O2, thermal decomposition of metal oxides, and their reduction by NO, CO and 

C3H6 under overall lean conditions. The kinetic parameters are evaluated from the 

measured evolution of outlet concentrations. 

 



PP-35

Figure 

The

yield is

exhibit 

transfo

Pd/Al2O

become

It is

catalys

by NO 

NO2 yie

Pd/Al2O

to PtOx

practica

C3H6 p

phenom

well as 

Referen
[1] Arva

redu
(201

[2] Arva
driv

Acknow
The wo

5 

1. Experime
and cool-do

Initia

e results in

s obtained 

significan

rmation of

O3 is gene

es limited 

s also eas

st – the form

in the fee

eld compa

O3 (Figure 

x. Reducib

al operatin

pulses [1]. 

mena. It is

 NO oxidat

nces 
ajová A., Koč
uction and N
16), 181, 644
ajová A., Koč
ing cycles. C

wledgements
ork has been

a) 

ental and sim
own tempera
al state: redu

n Figure 1 

in the first

tly lower 

f the meta

rally lower

by reaction

sier to part

med PtOx 

ed. The se

ared to the

1b). This 

ility of the 

ng conditio

The deve

s able to p

tion rate de

čí P., Schme
O oxidation 
4-650. 
čí P. Impact 

Chemical Eng

s 
n financially s

ulated NO2 c
ature ramps o
uced. Feed: 2

demonstra

t heat-up r

activity du

l sites into

r than on P

n equilibriu

tially recov

can be red

cond Pt/A

e cool-dow

indicates a

metal oxid

ons is furth

eloped kine

predict me

epending o

eißer V., Wei
in a diesel ox

of PtOx form
gineering Sc

supported by

294 

concentration
on a) Pt/Al2O
250 ppm NO

rate that fo

ramp after 

uring the s

o a less ac

Pt/Al2O3, w

um above 2

ver the NO

duced bac

Al2O3 heat-u

wn ramp. N

a significan

des and re

her examin

etic model

tal oxides 

on history 

bel M. The im
xidation cata

mation in dies
ience (2017)

y the Czech S

n in NO oxid
O3 catalyst, a
O, 8 % O2, 8 

or both cat

the cataly

subsequen

ctive oxidiz

where it rea

250°C. 

O oxidation

k to Pt at l

up ramp in

No such re

ntly higher

ecovery of 

ned in exp

 of DOC 

coverage 

of the ope

mpact of CO
alyst. Applied

sel oxidation 
), 158, 181-1

Science Fou

b) 

ation during 
and b) Pd/Al2
% CO2, 8 % 

alyst types

yst reductio

nt cool-dow

zed state. T

aches max

n activity o

ower oper

n Figure 1a

eactivation 

r stability o

NO oxidat

periments w

captures w

on the ca

rating cond

 and C3H6 pu
d Catalysis B

catalyst on N
87. 

ndation (proj

subsequent 
2O3 catalyst. 
H2O 

s the highe

on. Both c

wn ramp, 

The NO2 y

ximum valu

on platinum

rating temp

a shows a

 is observ

of PdOx co

tion activit

with lean C

well the ob

atalyst sur

ditions [2]. 

ulses on PtO
B: Environme

NO2 yield dur

ject GA 17-2

heat-up 
 

est NO2 

atalysts 

due to 

yield on 

ues and 

m-based 

perature 

a higher 

ved with 

mpared 

y under 

CO and 

bserved 

rface as 

Ox 
ental 

ring 

26018S). 



PP-36 

295 

HARDWARE COMPLEX FOR CONDUCTING EDUCATIONAL  
AND SCIENTIFIC WORKS ON COKING HYDROCARBON  

AND CARBON-CONTAINING RAW MATERIALS 

Natalia K. Kondrasheva1, Viacheslav A. Rudko1*, Dmitry O. Kondrashev2 
1Saint-Petersburg Mining University, St. Petersburg, Russia, 

natalia_kondrasheva@mail.ru, * oilrefine@gmail.com 
2PJSC «Gazprom Neft», St. Petersburg, Russia, oilrefine@gmail.com 

An increasing number of oil companies in worldwide and Russia equip their oil 
refineries with delayed coking unites for heavy residua feedstocks, since this process 
allows to deepen processing to 95 %, expand resources for obtaining commercial 
fuels and start production of special petroleum coke. Over the past 10 years, the 
delayed coking capacity in Russia has increased almost 3 times and at the beginning 
of 2018 amounted to 15.8 million tons per year for processed raw materials [1,2]. 

Conducting pilot runs directly on industrial installations may not always be 
economically or technologically justified, and in some cases leads to additional 
capital costs. To avoid this, the authors propose to conduct experimental studies on 
coking hydrocarbon and carbon-containing raw materials on the experimental setup. 

The experimental coking unit for educational and scientific works includes:  
1) a coking reactor with a charge of up to 0.5-1.0 kg, which is a cylindrical vessel for 
operation under pressure up to 0.10 MPa; 2) a "tube-in-pipe" heat exchanger for 
cooling the withdrawn gas-liquid product mixture; 3) a receptacle for collecting liquid 
distillate products for subsequent rectification; 4) gas flow meter; 5) scales (raw and 
food) for mass flow control; 6) electric control unit, including PID regulators and 
measuring regulators for monitoring the temperatures of the bottom, middle and top 
of the coking bed of the reactor; 7) PC with a mnemonic circuit connected to the 
electrical control unit and the ability to control the process from the SCADA system. 

This experimental unit will allow us to carry out studies related to the assessment 
of the quality of petroleum coke, the kinetics of process, the effect of modifying 
additives. 

References 
[1] Kondrasheva, N.K. [et al.] (2017). Study of Feasibility of Producing High-Quality Petroleum Coke 

from Heavy Yarega Oil. Chemistry and Technology of Fuels and Oils, 52(6), 663-669. 
[2] Rudko, V.А. [et al.] (2017). The study of hydrocarbon and trace element composition and 

properties of raw materials and products of delayed coking process. Bulletin of St PbSIT(TU), 38. 
69-75. 

Acknowledgements 
10.12854.2018/6.7 and 10.12855.2018/8.9 "Rational use and deep processing of hydrocarbon 

raw materials to produce marine fuels and carbon materials". 



PP-37 

296 

MIXTURE EFFECT ON ALKANE AND CYCLOALKANE 
HYDROCONVERSION OVER Pt/USY CATALYST 

Nebojša Korica, Pedro S.F. Mendes, Guy B. Marin, and Joris W. Thybaut 

Laboratory for Chemical Technology, Ghent University,  
Technologiepark 914, Ghent, Belgium, Nebojsa.Korica@UGent.be 

Hydroconversion over bifunctional catalysts is one of the most common ways to 

convert both oil cuts and alternative feedstocks into more valuable products. For 

instance, naphtha streams are converted into high-octane gasoline fuel by 

hydroisomerization, because of its capability to convert n-alkanes to i-alkanes [1]. 

The reaction mechanism comprises metal-catalyzed (de)hydrogenation and acid-

catalyzed reactions of isomerization and cracking [1-3]. These reactions occur on a 

bifunctional catalyst, which usually consists of Pt deposited on a zeolite. The isomer 

yield is maximized when the reactions on the acid sites are rate determining, i.e. 

when so-called ideal hydrocracking occurs [1].  

Hydroisomerization and -cracking of pure alkanes or cycloalkanes has already 

been investigated in detail, often employing model compounds (mixtures). [1-3] 

Realistic feeds are typically complex mixtures of such compounds. For instance, 

cycloalkanes have been observed to have negative impact on conversion and isomer 

selectivity in n-alkane hydrocracking [4,5]. This effect has qualitatively been attributed 

to physisorption, dehydrogenation, [4,5] or/and protonation steps, [6] however, 

quantification of reaction kinetics has not been performed yet. The Single-Event 

MicroKinetic (SEMK) methodology has been proved to be a particularly convenient 

tool for modelling hydroisomerization and hydrocracking reactions as it accounts for 

all elementary steps employing parameters with a precise physico-chemical meaning 

[2,3]. Using the SEMK method will enable us to assess literature reported 

experimental results complemented by own measurements and identify which 

phenomena are impacted when feeding mixtures. Due to its fundamental character, 

extrapolation to different ranges of industrially-relevant n-alkanes, cycloalkanes, and 

reaction conditions is possible.  

More specifically, the experiments and simulations with SEMK model for pure 

alkane and cycloalkane and for their mixture are in progress. The first experimental 

campaign is being carried out to obtain preliminary information about the alkane-

cycloalkane mixture effect during hydroconversion. The alkanes to be tested are 
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linear alkane between C6 and C8, while methyl-cyclohexane is used to represent 

cycloalkane. There are carried out experiments with pure hydrocarbon feeds and with 

equimolar mixtures of alkane and cycloalkane. The experiment conditions were set 

with the goal to be close to the transition from ideal to non-ideal hydrocracking. The 

experiment operating conditions are listed in Table 1. 
Table 1. The operating conditions for hydroconversion tests 

Variable Value
Temperature 220 °C 

Total pressure 0.5 MPa;  
1 MPa 

H2/HC 50 

Catalyst Pt/USY 
(CBV712) 

Pt loading 0.1 wt %  
0.5 wt % 

The simulations of SEMK model for ideal hydrocracking of pure alkane and 

cycloalkane, as well as their mixtures, are in progress. By comparing the 

experimental results and simulations we expect to get the first insight in the 

hydrocracking of mixtures and determine the occurrence of either antagonistic or 

synergetic effects. We expect to obtain sufficient understanding of the fundamental 

features after accounting of competitive adsorption, and dehydrogenation and 

protonation as rate determining steps in the SEMK model. 

References 
[1] Weitkamp, J. ChemCatChem 2012, 4, 292-306. 
[2] Thybaut, J.W.; Narasimhan, C.S.L.; Denayer, J.F.; Baron, G.V.; Jacobs, P.A.; Martens, J.A.; 

Marin, G.B. Ind. Eng. Chem. Res. 2005, 44, 5159-5169. 
[3] Martens, G.G.; Thybaut, J.W.; Marin, G.B. Ind. Eng. Chem. Res. 2001, 40, 1832-1844. 
[4] Guisnet, M.; Fouche, V. Appl. Catal. 1991, 71, 307-317. 
[5] Sanchez, P.; Dorado, F.; Ramos, M.J.; Romero, R.; Jimenez, V.; Valverde, J.L. Appl. Catal. A 

2006, 314, 248-255. 
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SYNTHESIS OF BUTYLLACTATE FROM FERMENTATION  
BROTH BY ESTERIFICATION IN A CONTINUOUS FLOW  

COLUMN-TYPE REACTOR 

Kozlovskiy R.A., Shvets V.F., Kozlovskiy I.A., Kozlovskiy M.R.,  
Lebedev A.O., Filatov I.E., Tarasov I.V. 

D. Mendeleev University of Chemical Technology of Russia,  
125047, Moscow, Russia, rakozlovskiy@mail.ru 

Nowadays, great variety of chemical products is producing by biotechnology 

methods from vegetable renewable sources. One of the most in-demand products 

from them is lactic acid, which is the basic substance for producing of wide variety of 

valuable organic chemicals, such as lactic acid esters, lactide, polylactide, propylene 

glycol. 

Most resent bio-lactic acid technologies have a stage of separation lactic acid 

from fermentation broth by sedimentation insoluble salt – calcium lactate. Next step 

is calcium lactate acidifying with conversion to lactic acid. This stage results to 

production of great amount of calcium sulphate (gypsum) wastes, about 1 ton of 

wastes on 1 ton of lactic acid. Thus, the costs for the purification of lactic acid and 

waste disposal reach 50 % of the product total cost price. 

To avoid this problem, new method of lactic acid separation in butyllactate form 

was developed, which includes esterification of ammonium lactate with butanol-1, 

and then purification of obtained ester by vacuum rectification. In addition, it is 

possible to recycle the evolved ammonia to fermentation step. 

Main (1,2) and side (3,4) reactions: 

       (1) 

     (2) 

    (3) 

    (4) 
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MODELING OF THE DIESEL FUEL HYDRAULIC CLEANER 
REACTOR WITH THE ACCOUNT OF THE CATALYST 

DEACTIVATION 

Krivtsova N.I., Frantsina E.V., Ivanchina E.D., Belinskaya N.S.,  
Tataurshikov A.V. 

Tomsk Polytechnic University, Tomsk, Russia, evf@tpu.ru 

Analysis of the current state of research in the field of modeling the process of 

hydrotreating diesel fuel is reduced to finding the kinetic patterns of transformation 

and describing the observed reaction rates. To describe the actual process of 

operation of catalysts and hydrotreating reactors, simplified kinetic equations for the 

total sulfur content are used. However, such models do not take into account the 

interactions of reagents-products, that is, do not take into account the different 

hydrogenation rates of various sulfur-containing compounds in the feedstock. 

The aim of this work is to develop mathematical model of diesel fuel 

desulphurization process using experimental data, obtained both from laboratory and 

industrial scale desulpurization units, using real feedstock (diesel fraction), and taking 

into account transformations of sulphur-containing compounds presented in diesel 

fractions. 

The first stage of modeling is the calculation of thermodynamic parameters for 

creating a formalized scheme, based on which a mathematical model of the process 

is constructed in the future. 

The calculation of the thermodynamic parameters was carried out under the 

conditions of the hydrotreating process: a temperature of 400 °C and a pressure of 

2.0 MPa. Thermodynamic analysis showed that the hydrogenolysis rate of sulfur 

compounds decreases in the series: sulfides> thiophenes> benzothiophenes> 

dibenzothiophenes, which corresponds to an increase in their stability. 

The average Gibbs energy of the reactions of hydrogenolysis of sulfides, 

thiophenes, benzothiophenes to cycloparaffins and dibenzothiophenes to diaromatic 

hydrocarbons was "-146.8"; "-137.7"; "-71.4" and "-37.8", respectively. In addition, 

hydrogenation reactions of mono- and polyaromatic compounds, olefins, also take 

place during hydrotreatment. The obtained results were taken into account in the 

preparation of a formalized scheme for the conversion of hydrocarbons in the 

process of hydrotreating diesel fractions (Figure 1). 
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Figure 1. The formalized scheme of reactions of the hydrotreating process of diesel fuel 

Based on the formalized scheme of hydrocarbon transformations (Fig. 1), a 

kinetic model of the hydrofining process of diesel fractions was compiled (Table 1). 
Table 1. Kinetic model of the hydrotreating process of diesel fractions taking  

into account deactivation of the catalyst 
Compound Dependence of the concentration of substances on time 

Sulphides ∗ , where  

Benzothiophenes (BT) ∗ ∗ , where ,  

Dibenzothiophenes 
(DBT) ∗ ∗ , where ,  

Saturated 
hydrocarbons (SH) 

∗ ∗ ∗ ∗ , where Олефины , 
 ,  

Aromatic 
hydrocarbons (Arens) 

∗ ∗ ∗ ∗ ∗ ∗

∗  

Olefins ∗  

Hydrogen ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗  

Coke ∗ , where   

The Initial conditions: t = 0: Ci = Ci0, where i is the corresponding hydrocarbon or 

hydrogen, ki – rate constant of chemical reaction; Ci is the current concentration of 

substance i; v is the stoichiometric coefficient; Ai is the relative activity of the catalyst 

with respect to route i; t is the reaction time; Wi – speed of chemical reaction, i is the 

number of hydrocarbon groups. 

Saturated 
hydrocarbons 

Aromatic 
hydrocarbons 

Coke 

Olefins 

Sulphides Benzothiophenes Dibenzothiophenes

К1 К2

КК4
К-5

К6

К5

К-2

К-3 
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CO2 UTILIZATION VIA TRI-REFORMING OF METHANE:  
EFFECT OF CATALYST SUPPORT 

Rohit Kumar*, Pant K.K. 

Department of Chemical Engineering, Indian Institute of Technology Delhi, India;  
*rohitkumaroct@gmail.com 

1. Introduction 
Methane is an important feedstock for fuels and chemicals [1]. Dry reforming of 

methane utilizes greenhouse gas CO2 to reform methane and thereby has 

environmental implication [2]. However, it requires CO2 pre-separation from its 

concentrated source. CO2 pre-separation from flue gas of electricity power 

generation plants is highly energy intensive step and it alone reduces plant’s net 

electricity output by as much as 20 %. A novel process called “Tri-reforming of 

methane (TRM)” does away with pre-separation as it employs CO2, H2O and O2 of 

flue gas to reform methane in a single reforming reactor [3]. However, large scale 

implementation of TRM has been impeded by lack of highly active and stable 

catalyst. It remains a challenge to develop a catalyst which is able to adsorb and 

activate all the reactant species CH4, CO2, H2O and O2 efficiently. Therefore, the 

present work aims to study the catalytic behavior of low cost Ni-based catalysts for 

TRM process. For this purpose, various Ni-based catalysts by employing different 

metal oxides Al2O3, MgO and CeO2-ZrO2 as catalyst support were synthesized and 

tested for TRM reaction at 800 °C under atmospheric pressure. A detailed 

characterization of calcined, reduced and spent forms of each catalyst has been 

carried out and finally correlation between catalyst physicochemical properties and 

catalyst activity has been established. 

2. Results and discussion 
Fig. 1 shows XRD pattern of calcined form of catalysts. NiO/Al2O3 displayed a set 

of diffraction peaks centered at 19.5o, 31.8o, 37.2o, 45.3o, 60.1o and 66.2o which can 

be assigned to NiAl2O4 cubic spinel-type structure (JCPDS 78-1601). No separate 

reflection corresponding to either NiO or MgO is observed in XRD pattern of 

NiO/MgO. It can be attributed to the formation of NiO-MgO solid solution. However, 

NiO/CeO2-ZrO2 showed cubic NiO peaks corresponding to (1 1 1), (2 0 0), (2 2 0), (3 

1 1) and (2 2 2) crystal planes centered at 37.2o, 43.3o, 62.8o, 75.4o and 79.2o 

respectively (JCPDS 78-0643). H2 – TPR profile showed in Fig. 2 indicates reduction 
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STUDY OF FLUID FLOW PATTERN IN STATIC LIQUID-LIQUID 
VORTEX CONTACTOR. EFFECT OF LIQUIDS SEPARATION 

Andrey O. Kuzmin1,2 
1Boreskov Institute of Catalysis SB RAS, pr. Akad. Lavrentieva 5,  

630090 Novosibirsk, Russia, kuzmin@catalysis.ru 
2Novosibirsk State University, 630090 Novosibirsk, Russia 

Liquid-liquid contacting for solute extraction or chemical reactions is widely 

employed in chemical industry. The choice of a liquid-liquid extractor depends on the 

field of application and special process requirements. To reach high intensity of 

mass-exchange between liquid phases the efficient blending and dispersing of liquids 

with intense interphase surface renovation are needed. These can be met in confined 

swirled flows where a spatially uniform field of shear stresses is present as well as a 

high level of turbulence. 

Liquid-liquid vortex contactor (LLVC) for efficient contacting immiscible liquids 

with moderate viscosities was developed [1]. It was kept in mind the extraction of 

sour impurities, such as mercaptans, from liquid hydrocarbon stream to an aqueous 

caustic solution with their subsequent partitioning to serve in the MEROX process. 

Current industry practice is to use a sieve-tray column with its large mass and overall 

dimensions. Fluid enters the static liquid-liquid vortex chamber (Fig. 1) via multiple 

tangential speeding up slots providing efficient conversion of initial pressure energy 

to vortex motion with almost total dissipation of incoming energy inside the flow due 

to reduction of incoming angular momentum by the flow friction stress on the end wall 

surfaces providing also shear stresses field within totally turbulent vortex flow. LLVC 

is designed for effective dissipation of incoming pressure energy inside the flow while 

keeping the sufficient level of centrifugal gravity to sustain the vortex motion. Liquid-

liquid vortex contactor has some attractive characteristics: sufficient yet not 

excessive mixing; absence of any moving or spinning parts; functioning under 

rocking condition. The simplest theoretical description of the flow in a such type 

contactor is presented based on an axis-symmetrical flow assumption. It is shown, 

that for mainly one phase flow, introducing the dimensionless radius  

*	 	 0	 	1 / 0	 	   and relative height *	 	 0/ 0	 	   of the vortex chamber, as 

well as the swirl number 0 at radius 0 for a flat VC from angular momentum balance 

equation the circulation reduction in the flow may expressed as:  
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CATALYTIC DEVICE ON THE BASE OF GLASS-FIBER CATALYST 
FOR ENVIRONMENTALLY SAFE COMBUSTION OF FUELS AND 

UTILIZATION OF TOXIC WASTES 

Sergey Lopatin1,2, Andrey Zagoruiko1,2 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 

2Utocs LLC, Novosibirsk, Russia 
zagor@catalysis.ru 

Catalytic combustion of fuels and various organic substances create the 

environmentally efficient basis for novel technologies in the area of energy production 

and utilization of harmful wastes. The glass-fiber catalysts (GFCs) which are under 

active development during last two decades are very promising for such applications 

due to their low pressure drop, intensive mass transfer and high thermal stability [1-3]. 

The flow-sheet of the catalytic combustor is presented in Fig. 1. 
 

 
 

Air 

Fuel/wastes 
Hot air  GFC cartridge

Burner
Ventilator

 
Fig. 1. The flow-sheet of the catalytic combustor 

The initial fuel is oxidized in the burner under limited amount of air supply to the 

flame zone. The oxygen deficiency in this zone gives the way to minimize or 

completely exclude the formation nitrogen oxides. Then the combustion products are 

mixed with air and fed to GFC-based cartridge, where CO and unburned 

hydrocarbons and organic substances are catalytically oxidized to harmless 

products: CO2 and water.  

The combustor may be used for direct air heating in various rooms and buildings. 

If the initial air contains some organic compounds, then they will be also oxidized, so 

the combustor may clear the atmosphere in the room instead of polluting it. The air 

may be supplied from the outside, so the combustor may combine the functions of air 

heating and ventilation systems.  
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The device uses the thermostable Pt-containing GFC IC-12-S111 [1] within the 

spiral cartridge structured with metal meshes. Such cartridges are characterized with 

high efficiency of mass transfer and low pressure drop.  

Fig. 2. The IC-12-S111 catalyst (left), structure and view of spiral catalytic cartridge (center and right) 

The pilot tests of the 15 kW combustor were performed using the LPG (propane-

butane) as a fuel. The test demonstrated the achievement of the designed heat 

power. The outlet gases contained less than 5 mg/m3 CO, less than 11 mg/m3 

hydrocarbons and less than 1 ppm NOx. The obtained environmental efficiency of 

the proposed device is higher than one for all known analogs.  

Except conventional gaseous fuels (LPG, natural gas) the GFC combustor may 

be adapted for the use of liquid fuels, both the conditional ones and the liquid wastes, 

containing the significant amounts of toxic organic compounds. In the latter case, the 

device may be mostly used, except energy production, for utilization of hazardous 

wastes.  

The GFCs are known as efficient catalysts for oxidation of chlorinated 

hydrocarbons [4], so the application areas may include the utilization of liquid toxic 

chlor-organic wastes without formation of toxic secondary wastes like phosgene or 

dioxins. 
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ACTIVATION OF ALUMINUM OXIDE AIRGEL FOR IMPROVEMENT 
OF CATALYTIC CAPACITY IN THE REACTION OF PROPANE 

DEHYDROGENATION 

Markova E.B.1, Serov J.M.1, Cherednichenko A.G.1, Sheshko T.F.1,  
Lyadov A.S.3, Khozina E.V.2, Simonov V.N.2,4 

1RUDN University, 117198, Moscow, Russia, e-mail: ebmarkova@gmail.com 
2Frumkin Institute of Physical Chemistry and Electrochemistry RAS,  

31, Leninskiy prospect, 119071, Moscow, Russia 
3A.V. Topchiev Institute of Petrochemical Synthesis, RAS,  

29, Leninskiy prospect, 119991, Moscow, Russia 
4National Research Nuclear University “Moscow Engineering Physics Institute”, 

Moscow, Russia 

Recently, the monolithic aerogels of aluminum oxyhydroxide nanofilaments were 

obtained of by oxidation of pure aluminum, which possessed a high specific surface 

area of 300 m2/g and a low density – 0.004 g/cm3, which is significantly less than the 

values (0.01-0.05 g/cm3) [1].  

Investigations of catalytic activity were conducted at atmospheric pressure in 

catalytic fluid cracking unit with a quartz reactor, loading of the catalyst was equal to 

0.05 g. As initial raw materials propane of high purity (99.98 mass %) was used. Flow 

velocity was equal to 1.25 ml/s.Analysis of the reaction products was carried out by 

means of a chromatograph Crystal 2000M. 

Electron microscopic investigations showed that the NFOA microstructure 

consists of the intertangled aluminum oxide fibers with a diameter of about 5-6 

nanometers. Investigations were conducted by means of an electronic translucent 

microscope of JEM 2120, the sample was placed on a substrate moistened with 

alcohol without preliminary treatment. 

The parameters of the porous structure of the samples were determined from 

nitrogen vapors adsorption isotherms at 77 K, measured by means of a high-vacuum 

volumetric equipment ASAP-2020 MP Micromeritics USA. Comparative plots showed 

that the NFOA filaments are nonporous, that is coincides with the TEM microscopy 

data (Table 1). 
Table 1. Pore structure characteristic of catalyst 

 

sample SBET, m2/g Sмp, m2/g WBJH, сm3/g 2xоBET, nm 
NFOA 

NFOAact 

320 
219 

320 
184 

0.58/0.56 
0.48/0.50 

10 
35 
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Freshly prepared NFOA was used as a catalyst in the cracking of pure propane, 

but it has not shown any catalytic activity. Therefore, freshly prepared NFOA sample 

was activated in hydrogen flow at 1123 K for 1 hour, and the catalytic activity of the 

activated catalyst was investigated in the same model reaction. 

The temperature dependence of ethylene selectivity of reaction shows that the 

NFOAact aerogels have a high selectivity in relation to ethylene formation at the yield 

of ethylene of about 50 % in the catalytic temperature range 773-1123 K, with a 

maximum of 63 % at 730 K (before resinification starts). 

Temperature dependence of the yield of ethylene for the NFOAact catalyst 

increases more sharply than that observed for the commercial Pt/Al2O3 catalyst [2] 

displaying almost linear growth of yield with temperature. At that, starting from 923 K 

using the NFOAact gives the yield of ethylene higher than in the case of using of 

commercial catalyst. It should be noted that the commercial catalyst contains active 

metal – platinum which determines its activity. 

The catalytic activity of the activated Al2O3 catalyst was quite stable. Namely, at 

temperatures up to 873 K, the catalyst exhibited the activity during ~ 400 hours. In 

the temperature range of 873-1023 K, the complete loss of activity occurred after 150 

hours; above 1023 K the activity disappeared after 5 hours. 

a b 
Figure 1. The catalytic activity of the catalyst: a - free Al2O3; b - activated Al2O3 
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Hydrocracking yield (HCK) Pr,% 100 feed od

feed

MF MF
HCK

MF
 

  
  

 

BTX selectivity ,% 100 BTXBTX
TOTAL
    

HDT-LCO as feed presented 0, 0, 98.7 and 1.3 wt. % of LF, BTX, MF and HF, 

respectively. The results are shown in Figure 2. 

 
Figure 2. Effect of the experimental conditions on the BTX selectivity from HDT-LCO 

The WHSV did not show to have an impact neither on the HCK yield nor in the 

BTX selectivity at 350 °C. Up to 400 °C as the temperature increased, the effect of 

the WHSV became more important. It is noteworthy that, at 400 °C, the HCK yield 

decreased from 77 to 31 % and the BTX selectivity went from 37 to 19 % by 

increasing the WHSV from 1.2 to 2.7 h–1. The increment in the temperature at a 

2.7 h–1 did not show notable effects neither in the HCK yield nor in the BTX 

selectivity.  

Optimal experimental conditions for attaining higher HCK yields and BTX 

selectivity were: 1.2-1.7 h–1 (WHSV), 375 to 400 °C and 7.4 MPa. 
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Sulfur content decreased as the temperature increased at both 5.5 and 7.5 MPa 
for both catalyst, HDT-1 and HDT-2. However, at 5.5 MPa, the HDT-2 presented a 
better performance reducing the sulfur content to less than 40 mg/kg at temperatures 
as low as 330 °C. The higher LHSV from 1.0 to 2.5 h–1 did not seem to have an 
adverse effect.  

  

 
5.5 MPa 7.5 MPa 

Figure 2. Effect of the experimental conditions on the hydrogenation of LCO 

The increment in temperature using both catalyst (HDT-1 and HDT-2), and 
pressures (5.5 and 7.5 MPa) presented a detrimental impact in the mono-aromatic 
presence for all the hydrotreated products. The higher amount of mono-aromatics 
were obtained when using HDT-1, 330 °C, 5.5 MPa, and a H2/HC of 360 m3/m3. A 
faster LHSV from 1.0 to 2.5 h–1 seemed to have also a good influence (Figure 2). 
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NUMERICAL STUDY ON FLUIDIZED BED METHANATION BY USING 
OpenFOAM 

Jiageng Li, Bolun Yang 

Department of Chemical Engineering, State Key Laboratory of Multiphase Flow in 
Power Engineering, Xi’an Jiaotong University, Xi’an Shaanxi 710049, P.R. China  

Methanation from syngas or coke oven gas for the production of synthetic natural 

gas (SNG) is a feasible way to alleviate the problems due to sharply-increasing 

energy demands [1]. Quite a few researchers have investigated the fixed bed 

methanation process which has been successfully utilized in the commercial plants 

[2, 3]. Compared with fixed bed, bubbling fluidized bed methanation is promising 

technology due to its advantages in mass and heat transfer, especially for the highly 

exothermic methanation reactions [4]. However, the multiphysics including gas-solid 

two-phase flow, mass and heat transfer and the chemical reactions in the bubbling 

fluidized bed are complex due to the multi-scale phenomenon [5]. 

In this work, a numerical model is developed by accounting for the multi-scale 

phenomenon. For the micro-scale, a modified chemical kinetic model is proposed 

based on the kinetics of Kopyscinski et al. [6] by taking account the chemical 

equilibrium of CO methanation. The modified chemcial kinetics can be extended to 

higher temperature and can also be utilized to dynamic simulations. For the meso-

scale structure, the local-structure-dependent drag model in our previous study is 

employed to calculate the gas-solid interactions [7]. In the macro-scale, the continuity 

equations, momentum equations and the species transport equations are solved by 

using the reactingTwoPhaseEulerFoam solver in the open source package 

OpenFOAM. Isothermal flow is assumed in the bubbling fluidized bed and thus the 

energy equations are not solved [8]. Then the simulation results were validated by 

some experiments in a lab-scale bubbling fluidized bed with the inner diameter of 

15mm and the initial bed height of 12 mm. The product gases were dried and the 

compositions were quantitatively determined by mass spectrometry. 

The effects of operating temperature, inlet gas composition and superficial inlet 

gas velocity are investigated and verified. Figure 1 shows the comparison of the 

experimental and simulated outlet gas compositions at different operating 

temperatures. It can be found from the figure that, in general, the model predictions 

are in agreement with the experimental data. The accurate predictions at higher 
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temperature (>400 °C) demonstrate that the modified kinetic model can capture the 

reaction behaviours in a fluidized bed methanation process. In addition, the 

numerical predictions at different inlet gas compositions and superficial inlet gas 

velocities are also in agreement with the experimental results. 

 
Figure 1. Comparison of the experimental outlet gas compositions and  

CFD simulations at different operating temperatures 
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PREPARATION OF Mo-BASED CATALYSTS IN A T-SHAPED 
MICROMIXER AND ITS OXIDATIVE DESULFURIZATION 

PERFORMANCE 

Liping Li1, Anjie Wang2, Yao Wang1 
1School of Chemical Engineering, Dalian University of Technology,  

Dalian, 116024, China, e-mail: wangyao@dlut.edu.cn 
2State Key Laboratory of Fine Chemicals, Dalian University of Technology,  

Dalian, 116024, China 

MoO3/SiO2, a supported transitional metal oxide, has proved to be an efficient 

catalyst for oxidative desulfurization (ODS) [1]. The ODS performance of MoO3/SiO2 

is significantly influenced by its particle size uniformity. Traditional synthetic methods 

in tank reactors always lack precise control over the mixing, nucleation and growth 

processes, thus the sizes and size distribution of the particles are not in uniform. 

Therefore, the obtained catalyst shows low activity and stability for ODS [2]. Due to 

the excellent properties of heat and mass transfer and continuous processing, micro-

mixer offers a variety of advantages over batch synthesis of nanoparticles and has 

already been widely applied in synthesizing nanomaterials and catalysts [3,4]. 

Herein, a facile controllable route for preparing 10 % MoO3/SiO2 in the T-shaped 

micro-mixer was reported. The effects of the preparation conditions, such as flow 

rate, temperature and reactant concentration were investigated so as to obtain the 

optimal synthesis condition. In order to contrast, a sample synthesized through batch 

reactor was prepared. The X-ray diffraction (XRD) patterns of the samples are 

presented in Figure 1. All diffraction peaks can be indexed to the pure MoO3 without 

the presence of any impurities and the sample prepared through micro-mixer shows 

an enhanced dispersion of MoO3 over SiO2. The catalyst shows higher activity and 

stability in the oxidation of dibenzothiophene (DBT) with tert-butyl hydroperoxide 

(TBHP) as the oxidant than the catalyst prepared by traditional synthesis method 

(sol-gel) in tank reactors, as shown in Figure 2. It should be noted that, 10 % 

MoO3/SiO2 prepared via the T-shaped micro-mixer also shows remarkable stability in 

a fixed-bed reactor with high ODS activity (96 %) and negligible leaching of Mo in 

300 h.  
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Fig. 1. XRD patterns of MoO3/SiO2 prepared by 

different reactor types 
Fig. 2. DBT conversion on MoO3/SiO2 catalysts 

with different reactor types 
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The propylene selectivity can be steered by manipulating the extent to which both 

catalytic cycles contribute to the product distribution. A fundamental model, capable 

of quantifying these contributions would, hence, be an invaluable asset. 

In the current state-of-the-art, the aromatic hydrocarbon pool species is 

considered as a separate catalytic site distinct from the acid sites in the zeolite 

framework [5]. The present work aims at more accurately describing the MTO 

reaction by including a detailed molecular description of the aromatic hydrocarbon 

pool species as indicated in Figure 1 (right). Accounting for the chemical dynamics of 

the formation and consumption of the species belonging to both the alkene 

homologation and aromatic hydrocarbon pool cycle will allow to well described the 

balance between both catalytic cycles. The application of (de)-protonation, (de)-

methylation, (de)-alkylation and rearrangement reaction families to the methylated 

benzene species results in the complete reaction network comprising 4443 aromatic 

hydrocarbon pool species being interconverted in 13694 reactions. This 

implementation was performed with the in-house developed Reaction Network 

Generation Program (ReNGeP) [6] for acid-catalyzed conversion of fossil resources.  

Current work in progress is the implementation of this detailed network in the in-

house developed kinetic model for methanol-to-olefins [5]. The newly developed 

model is expected to accurately represent the balance between the two catalytic 

cycles and the experimentally observed product distribution [7] as compared to the 

state-of-the-art model [5].  
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STUDY OF KINETIC ASPECTS OF THE WATER VAPOR 
ADSORPTION ON ALUMINUM OXIDE MATERIALS DOPED  

WITH ALKALI METAL IONS 

Livanova A.V.1, Meshcheryakov E.P.1, Reshetnikov S.I.2, Kurzina I.A.1 
1Tomsk State University, 36 Lenina Avenue, Tomsk 634050 Russia, 

truelivanova@mail.ru 
2Boreskov Institute of Catalysis SB RAS, Pr. Akademika Lavrentieva 5,  

Novosibirsk, 630090, Russia, E-mail: reshet@catalysis.ru 

Water removal is an important step in air conditioning and industrial gas drying. 

Water is removed from air to avoid undesirable influence caused by liquid and ice 

formation and corrosion. The adsorbents based on aluminum oxide have found wide 

application just owing to their high efficiency in drying of gases with relative humidity 

and to their high mechanical strength [1, 2]. To ascertain the role played by the 

chemical modification in changing the adsorption characteristics and acid properties 

of the surface [3], it is necessary to have data on the adsorption dynamics (kinetics), 

obtained with the fine fraction of the sorbent in the absence of the internal diffusion. 

In this work, we studied the kinetics (dynamics) of the water vapor adsorption on 

aluminum oxide materials modified with alkali metal ions. 

In this study, the used several same pseudoboehmite-based samples 

synthesized by the method of centrifugal thermalactivation of hydrargillite [4]. Sample 

A-2 was produced by peptization with nitric acid, and samples modified with alkali 

ions of sodium (A-2–Na) and potassium (A-2–K) were formed by peptization with 

alkali solutions (NaOH and KOH).  

The adsorbents were characterized by physicochemical analysis: an X-ray 

diffraction (XRD) analysis was made on a Rigaku Miniflex 600 diffractometer; 

thermogravimetric studies of the samples were carried out on a NETZSCH STA 409 

instrument for synchronous thermal analysis in the oxidizing atmosphere; the texture 

characteristics were determined from nitrogen adsorption isotherms measured at 

77 K; the mesopore volume was calculated by analysis of the curve of the integral 

pore volume distribution as a function of the pore radius; the content of sodium and 

potassium in the samples was determined by the method of mass spectrometry with 

inductively coupled plasma (ICP-MS) on an Agilent 7500cx instrument. 

According to the XRD results, the samples of aluminum oxide drying agents had 

the form of a mixture of low-temperature modifications of aluminum oxide,  
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( +  + )–Al2O3. The phase ratio remained nearly unchanged upon. The content of 

sodium ions in the modified samples A-2–Na and A-2–K, the 

content of the corresponding modifying cation is ~2 wt %. 

The determination of the dynamic of water vapor adsorption on adsorbent 

samples were determined by the weighing method on a McBain–Bakr quartz 

balance. The sensitivity of the balance was 2.9 × 10–3 g mm–1. The results of the 

measurements are shown in Figure. 

 
Fig. Dynamic curves of water vapor adsorption on the different adsorbent samples (the 0.5-1.0-mm 

fraction). The points represent the experimental data, and the lines are calculated by the equation (1) 

For the vapor adsorption under isothermal conditions at a constant partial 

pressure, the kinetic absorption process is described by the equation: 

dа/dt = β(a* - a),  t=0: а = 0. 

Thus, it was found that the alkaline modification of the surface of aluminum oxide 

adsorbents results in that absorption equilibrium (a*) increases (by ~40 %) as 

compared with the unmodified drying agent.  
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SIMULATION OF THE RECOVERY AND STORAGE  
OF RESIDUAL THERMAL ENERGY IN SOLIDS  
OF THE INDUSTRY OF NORTHERN MEXICO  

José Angel Loredo-Medrano, Salvador Tututi-Ávila, José Sánchez-López, 
Ricardo Gómez-González, Oscar Huerta-Guevara 

Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas,  
Monterrey, Mexico, jose.loredom@uanl.mx 

Thermal energy is a type of energy widely used in industrial processes and due to 

its inherent characteristics, its use has not been maximized. In this project, a packed 

bed equipment is simulated, to analyze regional, natural and waste solids, for you 

take advantage of its transport properties and take advantage of the thermal energy 

of process waste streams and preheat the supply currents, in this way the heating 

service requirement will decrease and the emissions to the environment will have 

lower temperatures than the current ones. This project focuses on proposing the 

resolution of a mathematical model based on transport phenomena with experimental 

validation [1,2,3] that allows the adequate design of a thermal energy recovery and 

storage system.  
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EVALUATION OF THE EFFICIENCY OF THE DEWAXING UNIT 
UNDER OPTIMAL CONDITIONS 

Lutsenko A.S., Frantsina E.V., Belinskaya N.S., Ivanchina E.D. 

Tomsk Polytechnic University, Tomsk, Russia, evf@tpu.tu 

The study of properties and prediction of the behavior of complex systems, both 

natural and artificial, is impossible without constructing models of these systems. 

Depending on the nature of the system under investigation, physical or mathematical 

models can be used. As a rule, mathematical models are more often used to study 

complex systems than physical models, since they have a number of advantages. 

The necessity of applying the method of mathematical modeling for chemical 

industry systems is dictated by the urgency of the problem of the efficiency of 

production processes. Especially this problem is relevant for catalytic processes, 

since the possibilities of the physical modeling method are limited when applied for 

the purpose of optimizing processes and predicting the catalyst regeneration cycle. 

In this study, calculations were performed using a mathematical model of the 

dewaxing process. The mathematical model was supplemented with the function of 

searching for the optimal temperature regime of the process, depending on other 

input parameters (raw material quality, raw material consumption, hydrogen-

containing gas flow) [1]. 

The controlled parameters of the dewaxing process are the raw material 

consumption, the hydrogen-containing gas flow rate and the reactor temperature. 

Since the consumption of raw materials is determined by the need for the product, 

the optimization of the process was carried out according to the temperature and flow 

rate of the hydrogen-containing gas. 

In the study [1] on the effect of hydrogen-containing gas on product yield, сold 

filter plugging point, and relative activity of catalyst activity, recommendations were 

proposed on the values of raw material consumption, depending on the density of 

raw materials, which were taken into account in the calculations. 

The purpose of temperature optimization is to determine the value of such a 

process temperature at which the temperature of the cold filter plugging point of the 

product (diesel fraction) is reached minus 26, as a rule, this temperature corresponds 

to the maximum yield of the diesel fraction, because the overestimated process 
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temperature leads to an increase in the yield of gasoline and gas fractions and 

reduction of the yield of the diesel fraction. 

The calculation shows that with an optimal consumption of the hydrogen-

containing gas and the process temperature, it is possible to obtain a larger yield of 

the product on average by 2.6 % per year, it is permissible to conduct the process at 

a temperature somewhat lower (on average 5-7 °C) without loss quality of the 

product, in addition, the coke accumulation is significantly reduced and the activity of 

the catalyst remains (Fig. 1, Table 1). 

 
Fig. 1. Optimum and factory temperature modes 

Table 1. Operating parameters of the dewaxing unit 
Yield of diesel fraction, thousand tons 

Year 2012 2013 2014 2015 2016 2017 Amount 
Factory mode 921 1125 1954 1752 1538 397 7687 

Optimum mode 940 1179 2013 1756 1605 401 7894 
Increase in yield of diesel 
fraction in operation at the 

optimal temperature 
regime, % 

2,0 4,6 2,9 0,2 4,2 1,0 2,6 

Relative activity of the catalyst at the end of the period, rel. units 
Factory mode 0,55 

Optimum mode 0,96 
The average temperature in the reactor, °C 

Factory mode, °С 341 
Factory mode, °С 334 
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KINETICS OF DEHYDRATION OF LINEAR PRIMARY ALCOHOLS 
OVER H-ZSM-5 ZEOLITE CATALYST UNDER HIGH PRESSURE 
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Alcohols/bio-alcohols conversion to distillates as an alternative feedstock for 

energy is receiving considerable attention the world over since the discovery of 

methanol to gasoline and distillates (MTGD) process by ExxonMobil. Information 

regarding the conversion of primary alcohols to distillates remains limited on the 

open literature. The purpose of this study was to investigate reaction mechanisms 

and kinetic constants of linear primary alcohols dehydration over HZSM-5 zeolite 

catalyst under conditions used in the conversion of olefins to distillates (COD) 

reaction system viz. 40 bar; 220 °C. The ethanol kinetics were developed via the 

hydrocarbon pool mechanisms in which the alkylation of dietyhyl ether formed was 

dominant. The kinetic constants for ethanol dehydration when co-fed with propylene 

were determined by regression of experimental data at 220-260 °C. Whilst, the 

dehydration kinetic constants of n-propanol and n-butanol were determined at 140-

185 °C. The results obtained for all alcohols dehydration showed a reasonable 

agreement between experimental data and the proposed kinetic model. The results 

found depicts that  ethanol dehydrates to ethylene, diethyl ether and water, while 

diethyl ether formed further reacts with the co-fed propylene as well as generated C4 

and C5 olefins to form higher olefins. Minor oligomerization of propylene and butene 

to C6 and C7 olefins was also observed. n-Propanol was found to have dehydrated 

to propylene, di-n-propyl ether and water. Whereas, the dehydration of n-butanol led 

to the formation of butene, di-n-butyl ether and water. In both instances, no 

occurrence of oligomerization reactions was observed. Lower temperatures favoured 

ethers formation (via Lnk2) rather than olefins (via Lnk1) due to the predominance of 

the forward exothermic reactions where ethanol, n-propanol and n-butanol 

dehydrated to diethyl ether, di-n-propyl ether and di-n-butyl ether respectively, as 

shown in Figure 1. The apparent rate constants further showed that olefins are 

formed firstly through the decomposition of ethers (Lnk3) especially at low 
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THREE-STAGE HEAVY OIL HYDROPROCESSING OVER 
MACROPOROUS CATALYSTS 

Malkovich E.G.1,3, Bazaikin Ya.V.1,3, Lysikov A.I.2,3, Semeykina V.S.2,3,  
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2Boreskov Institute of Catalysis SB RAS, 5 pr. Lavrentieva str.,  
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3Novosibirsk State University, 1 Pirogova str., 630090, Novosibirsk, Russia 
4PJSC Gazprom Neft, 3-5 Pochtamtskaya str., 190000, St. Petersburg, Russia 

Effect of catalyst pore size on heavy oil hydroprocessing has been a matter of 

discussion for several decades. It is widely known that a developed pore structure is 

needed for high molecular heavy oil components to access catalytic sites, however, 

exceedingly high pore volume and size should inevitably lead to the drop in specific 

surface area and mechanical strength of the catalyst pellet. Therefore, the optimum 

in the pore size for this particular process is considered to be in the range of 30-

50 nm [1]. Nevertheless, more and more decreasing quality of heavy feed 

encourages researchers to extend the range of the pore size to a macroporous 

region. A theoretical contribution [2] reports on the superior lifetime and lower 

deactivation rate of the hierarchically structured catalyst with a meso-macropore 

network compared with the optimized purely mesoporous structure. The present work 

is aimed at studying the effect of hierarchical macro-mesoporous structure on the 

catalyst activity in heavy oil hydroprocessing. A facile “hard” template method using 

polymeric microbeads has been proposed for the preparation of alumina-supported 

catalysts with the desired textural parameters. Multistage catalytic experiments have 

been carried out under conditions close to the industrial ones (350-420 °C, 7 MPa, 

LHSV 1 h–1, vol. H2/feed = 1000, 200-800 h on stream), with the I stage providing 

metal and asphaltene removal, II stage capable of S removal, and III stage designed 

for hydrocracking of large molecules.  

The proposed “hard” template method consists in creation of the additional 

macropore structure by the removal of polymeric microbeads from the precursor-

template composite [3, 4]. Monodispersity and tunable size make these microbeads 

good templates for the preparation of hierarchical Al2O3 with bimodal porosity (10 and 

~200 nm) and exceedingly narrow pore size distribution. Therefore, specific surface 

area (100-150 m2/g) and mechanical strength (2-5 MPa) values lay in the range  
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ZSM-5 catalysts showed an extremely high hydrocracking rate leading to the rapid 

deactivation. A theoretical modeling of asphaltene diffusion in the hierarchically 

porous catalyst is also being in progress. The preliminary results do confirm the 

hypothesis of superior stability of the catalysts with bimodal pore size distribution. 

A facile “hard” template method has been applied to the preparation of the 

hierarchical macro-mesoporous catalyst for heavy oil hydroprocessing. The 

technique allows one to obtain a narrow bimodal pore size distribution, that imply the 

specific surface area and mechanical strength values lay in the range typical for 

purely mesoporous structures, whereas the pore volume reaches 0.75-1.20 cm3/g 

with 30-75 vol. % of macropores. The results on the consecutive three-stage 

hydroprocessing of heavy oil clearly indicate that the developed hierarchical texture 

improves the catalyst stability against metal and asphaltene deposition by several 

times, as well as increases hydrocracking activity of NiMoS/Al2O3 catalysts, 

especially those modified with zeolite as an acidic additive. 
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EXPLORING PULSED LASER POLYMERIZATION IN VIEW OF 
REACTOR DESIGN AND CONTROL 
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Many polymer products in everyday life are produced via free radical 
polymerization (FRP), which is characterized by a chain-growth mechanism with 
initiation, propagation, and termination as the basic reactions. The design of 
industrial scale radical polymerization reactors is complicated as many competitive 
phenomena are simultaneously occurring, including diffusional limitations due to 
viscosity changes along the polymerization [1]. A model-based design strategy is 
recommendable, as it allows a fast screening of a broad range of polymerization 
conditions. The success of model-based design strategies is however determined by 
the availability of accurate kinetic parameters. For many reaction steps, the Arrhenius 
parameters are still uncertain, which hampers the design of radical polymerization 
processes. 

Moreover, in view of reactor control, accurate knowledge of the polymerization 
rate is crucial taking into account the high amount of heat generated during monomer 
incorporation. A key parameter controlling the polymerization rate is the propagation 
rate coefficient kp. The preferred technique for the determination of kp is pulsed laser 
polymerization (PLP) [2-5]. In PLP, photoinitiated radical pulses are generated with a 
frequency ν (or dark time ∆t = ν–1), which, after a limited monomer conversion  
(< 5 mol %), leads to a molar mass distribution (MMD) possessing repetitive inflection 
points Lj (j = 1, 2, …). For systems with one dominant macroradical type, kp can be 
directly determined via: 
 kp = Lj (j ∆t)–1 [M]0–1 (1) 
in which [M]0 is the initial monomer concentration. 
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POWER-TO-GAS: BIMETALLIC CATALYSTS SUPPORTED ON Al2O3 
FROM A SULPHUR CONTAING BIOGAS 

Méndez D., Cambra J.F., Barrio V.L. 

School of Engineering (UPV/EHU), Plaza Ingeniero Torres Quevedo 1,  
Bilbao 48013, Spain, david.mendez@ehu.eus 

Energy storage from alternatives sources (solar, wind,…) is possible by chemical 

way. The full process, Power-to-gas, uses the energy for the water electrolysis to 

produce hydrogen and oxygen in a first step. Secondly, carbon dioxide – from a 

biogas for example – reacts with hydrogen in order to produce methane that can be 

stored, burned or injected into the existing natural gas grid.  

In this work, carbon dioxide methanation was studied from an effluent with 

sulphur, taking into account deactivation of the catalysts and a regeneration process. 

Because of that, different catalysts supported on alumina [1] were prepared, using 

nickel (13 %) as main active metal and with the addition of small amounts of 

transition metals like Mo, Fe, Co or Cr, in different proportion (from 4 to 8 wt. %), in 

order to increase their catalytic activity and deactivation resistance [2]. Addition of 

noble metals increased the dispersion and the reducibility of the nickel species [3]; 

while the addition of transition metals has the same effect than noble metals, 

increasing the dispersion and reducibility of nickel species with lower prices, thus 

reducing the prices of the catalyst. The nickel catalytic activity, between 300 and 

500 °C, at 10 bar, was increased when transition metals were added. These 

bimetallic catalysts present a higher deactivation resistance than nickel monometallic 

catalyst. Although after several hours hydrogen sulfide also deactivates the bimetallic 

catalysts. Afterwards H2S is removed followed by a regeneration with oxygen [4]. For 

the catalytic systems tested a different behavior was measured. Second metal 

addition proves that catalysts stability increased maintaining the high yield of 

monometallic catalyst.  

The catalysts are studied employing different characterization techniques in order 

to analyze the main physicochemical properties. The techniques employed are: ICP-

OES, N2 adsorption-desorption isotherms at 77 K, TPR, XRD and XPS, between 

others. Physicochemical characterization of catalytic samples shows differences in 

chemical state, metal-support interactions, average crystallite sizes and redox 

properties of nickel metal particles.  
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The activity tests were performed in a bench-scale plant using temperatures 

ranging between 523 and 723 K at 10 bar, feeding a mixture of H2 and CO2 in a 4:1 

ratio (275 mL/min of mass flow with 0,2 g of catalyst). The yield obtained for the 

different catalyst prepared is summarized in figure 1. 

 
Figure 1. Methane yield obtained for the tested catalysts supported on -alumina 

High initial activity is achieved for the Cr promoted Ni catalyst. On the contrary, 

for the Fe promoted catalyst high activity is achieved but only at high temperature.  

The main goal of this work is the valorization of CO2 which contains sulphur for 

the generation of methane and by the development of promising catalysts doped with 

Cr, Fe and Co. 
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Table 1 shows the 
equilibrium conversion 
and the required time to 
reach the equilibrium in 
the batch esterification 
using various cinnamic 
acids and alcohols at 
50 °C. For reference, 
the pharmaceutical 
activities of each ester 
are also listed. In all 
cases, high conversion 
of cinnamic acids were 
achieved. In addtion, 
the resin catalyst was 
able to be repeatedly 
used without any loss in 
the catalytic activity. 

Figure 3 shows the 
concentration profiles in 
the effluent from the 
column packed with the 
resin, kept at 60 °C, in the continuous esterification of caffeic acid and phenethyl 
alcohol. The abscissa shows the total effluent volume. For reference, operating time 
is also shown as a co-abscissa. The phenethyl caffeate concentration in the effluent 
became constant after the effluent volume reached about 150 cm3 and the steady 
state was cnsidered to be reached. The concentration of caffeic acid was almost zero 
until the end of the operation, so that the complete conversion was obtained. 
Furthermore, the target pharmaceutical ester was continuously produced for about 
two weeks without any loss in the catalytic activity. Therefore, the method using the 
porous type resin catalyst in the solvent free system would provide an industrially 
feasible process to simply and efiiciently produce various cinnamic acid esters. 

References 
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Table 1. Equilibrium conversion and required time in batch 
esterification of various cinnamic acids and alcohols 

Fig. 3. Concentration profiles in effluent from column in continuous 
esterification of cafferic acid and phenethyl alcohol 
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Rh/Al2O3 STRUCTURED CATALYSTS FOR SYNGAS PRODUCTION 
VIA DRY REFORMING AND PARTIAL OXIDATION OF BIOGAS 

Andrea Navarro-Puyuelo1, Inés Reyero1, Ainara Moral1, Ane Egaña2, 
Íñigo Pérez-Miqueo2, Oihane Sanz2, Fernando Bimbela1, Mario Montes2, 

Luis M. Gandía1 
1Grupo de Reactores Químicos y Procesos para la Valorización de Recursos 

Renovables, Institute for Advanced Materials (InaMat),  
Universidad Pública de Navarra, Pamplona, 31006, Spain, lgandia@unavarra.es 

2Departamento de Química Aplicada, Universidad del País Vasco,  
20018, San Sebastián, Spain 

Introduction 
At present there is a great interest in biogas valorization by means of its 

transformation into syngas (CO + H2). Methane dry reforming processes for syngas 
production using Ni catalysts have been widely studied in the literature. However, 
due to severe deactivation of Ni catalysts by carbon deposition, the development of 
noble metal-based catalysts such as Rh is an interesting alternative with very 
promising results recently reported. Moreover, by combining methane dry reforming 
with the partial oxidation of methane reaction (using O2), the difficulties associated to 
dry reforming processes could be overcome. Such approach is known as combined 
reforming or oxy-CO2 reforming. In addition, the use of structured catalysts is 
advantageous in these processes because mass and heat transfer are improved and 
high methane conversion levels can be attained at very short contact times. Within 
this context, the general objective of this work is the development of suitable 
structured catalysts for syngas production from biogas through the combination of dry 
reforming and partial oxidation processes using Rh/Al2O3 catalysts. 

Experimental 
0.5 % Rh/Al2O3 catalysts were prepared by the incipient wetness impregnation 

technique (catalysts named as ‘reference’). The structured catalysts were prepared 
by washcoating with several suspensions using 2 types of Fecralloy® monoliths (2360 
and 289 cpsi) and foams (60 and 40 ppi) having diferent cell densities or porosities. 
The suspensions were prepared using additives (colloidal alumina and polyvinyl 
alcohol, PVA) by two different methods: i) preformed catalyst, that is, using 
previously prepared powder Rh/Al2O3 catalysts together with the additives, ii) and all-
in-one, by adding the Rh precursor, alumina support and the additives at the same 
time. Part of the suspensions were dried and calcined for 2 h at 400 °C (slurried 
cataysts) to compare them with the reference catalyst. The catalysts were tested in a 
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Figure 2 
a) 

b) 

tubular fixed bed quartz reactor operating at atmospheric pressure. The tests were 
carried out at 700 °C and 150 N L CH4/(gcat·h), using different O2/CH4 molar ratios in 
the feed, between 0 and 0.45. A synthetic gas mixture composed of 54 % CH4, 40 % 
CO2 and 6 % N2 was fed into the reactor in all experiments, and high-purity synthetic 
air (21 % O2) was added to the gas feeding line in the oxy-CO2 reforming runs. 

Results and Discussion 
Firstly, the influence of the suspension preparation method was studied by testing 

the suspensions under dry reforming (O2/CH4 
= 0) and oxy-CO2 reforming (O2/CH4 = 0.45) 
conditions. Figure 1 shows the evolution of 
methane conversion over the reaction time. 
Adding O2 in the gas feed results in a notable 
increase in methane conversions. It can also 
be observed that suspensions from both 
preparation methods presented similar 
performances in comparison with the 
reference, both under dry and oxy-CO2 
reforming conditions. Nevertheless, the all-in-one 
suspension had slightly better activity, greater H2 and CO 
yields and superior stability. Therefore, this method was 
selected for preparing the structured catalysts. Figure 2 
shows two of the structured catalysts prepared, a monolith 
(2.a) and a foam (2.b), after several coating steps carried 
out to deposit around 160 mg of total solid, of which 
0.25 mg are Rh. These structured catalysts present an 

average thickness layer between 4 and 10 m with an 

excelent adherence. In view of these results, further work 
is ongoing testing these structured catalysts both under 
dry and oxy-CO2 reforming conditions. 
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MODELLING OF CATALYTIC CRACKING TAKING INTO ACCOUNT 
THE CATALYST DEACTIVATION BY COKE AND HEAVY METALS 

Nazarova G.Y., Ivanchina E.D., Ivashkina E.N., Shafran T.A. 

National Research Tomsk Polytechnic University, Tomsk, Russia  
E-mail: chuva@tpu.ru 

The zeolite-containing cracking catalyst deactivation is one of the most important 

problems for oil refineries [1]. The activity loss of the catalyst under the heavy metals 

effect is an irreversible process alternatively to catalyst deactivation by coke. The 

catalytic cracking model taking into account the catalyst activity changing under the 

influence of deactivating factors (Ni, V, coke) and the coke formation intensity 

accounting for the structure-selective properties of the catalyst is proposed in this 

research (Fig. 1). 

 
Figure1. Accounting scheme of the reversible and irreversible catalyst deactivation  

during the catalytic cracking 

The dependence of the catalyst dehydrogenation ability on the metal content in 

the feedstock has been revealed to account for the Ni deactivation effect on the 

catalyst. This effect leads to increase of the coke formation degree on the catalyst 

and decrease of the main products yield [2]. The deactivation scheme in accordance 

with [3] has been chosen for V deactivation effect accounting. The scheme takes into 

account that the dealumination occurs due to the reaction of catalyst with vanadium 

acid formed from the contact of the vanadium oxide with water vapor. The formation 

of metal oxides occurs in the air stream during the regeneration. Along with, the 
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MICROTUBULAR SOLID OXIDE ELECTROLYZER CELL FOR 
HYDROGEN PRODUCTION 

Nemudry A.P.1, Gulyaev I.P.2, Gainutdinov I.I.1, Popov M.P.1, Zagoruiko A.N.3 
1Institute of Solid State Chemistry and Mechanochemistry SB RAS;  

Kutateladze 18, Novosibirsk, 630128, Russia,  
E-mail: nemudry@solid.nsc.ru 

2Institute of Theoretical and Applied Mechanics, Institutskaya 4/1,  
Novosibirsk, 630090, Russia 

3Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5,  
Novosibirsk, 630090, Russia 

Alternative methods of power generation attract more attention in recent years. 

This interest is caused, from one side, by reduction of mineral fuels, from other - by 

economic efficiency of the innovative approaches in the production of electric power 

and strict ecological requirements for new technologies. 

One of directions of alternative energy development are the high temperature 

electrochemical devices (ECD). Such devices allows to a) effectively (efficiency 60-

70 %) transform an organic fuel and hydrogen, in electric power with the use of solid-

oxide fuel cells (SOFC) and b) process carbon dioxide and aquatic steam in a 

synthesis gas (CO + 2Н2), utilizing the extrass of greenhouse gases, effectively 

stocking energy of cheap energy sources, with the use of high temperature solid-

oxide electrolyzers (SOE). As known, hydrogen is not only basis of ecofriendly 

hydrogen energy but also feedstock for the various hydroprocessing technologies, 

multi-tonnage production of ammonia and methanol and subsequent chemical 

products. 

Structurally SOE/SOFC can be divided into planar and tubular shape. A planar 

design is widely used in stationary devices, by power from a megawatt and higher, as 

provides good heat and mass transfer, compactness of assembling and allows to use 

the standard methods of ceramic treatment. The substantial lack of planar 

configuration is high requirements to absence of considerable temperature gradients 

along a membrane, that can result in device destruction during thermal cycling and 

dramatic changes of temperature. This results in a slow startup speed.  

The problem can be solved using microtubular membranes, the advantages of 

which are improved thermal and mechanical stability, ease of sealing. The rapid 

launch of high-temperature ECD opens the possibility of developing a promising 



PP-62 

345 

niche of compact, mobile devices in transport, in the military field and in household 

appliances. 

In this paper, the results of studying the functional properties of microtubular 

SOEC with new cathode materials are presented. The obtained data indicate the 

promise of these cathode compositions. 
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ACCELERATION OF GAS ABSORPTION RATE USING LIQUID FILM 
FORMED ON ROTATING HORIZONTAL CYLINDER 
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Sendai, Japan, nogami@tohoku.ac.jp 
2Graduate School of Engineering, Tohoku University, Sendai, Japan 

Gas absoption processes can be seen in various industrial processes. 

Improvement of their rates is one of the important issues becasue they are 

sometimes limiting steps of the whole process. In this study, a new process of gas 

absroption to a liquid is developed to enhance the gas absorption rate. When a 

rotating cylinder is halfway immersed into a liquid bath, a liquid film is formed on the 

cicumferential surface of the cylinder. To this liquid film, fresh absorbent (liquid) is 

always supplied and the concentration difference can be kept large. Additionally, it is 

considered that the fast motion of the liquid film can be enhance the mass transfer 

rate around the gas-liquid interface. Thus the gas absorption rate is expected to be 

improved by this new process. This study experimentally discusses the effectiveness 

of this new process and the gas absorption characteristics.  

The gas absoption rates were measured through the experiments. First, the 

rotating horizontal cylinder is settled in the rectangular vessel. This vessel is put into 

the airthight container. The atmosphere in the container is replaced with CO2 and the 

CO2 is kept to flow at certain flow rate. The absorbent liquid is poured into the vessel 

upto the axis of the cylinder. Distilled water or aqueous solusion of NaOH is used as 

the absorbent. A pH sensor is inserted into the bath and start to rotate the cylinder. 

The concentration of CO2 in the absorbent is obtained from the pH of the absorbent.  

Figure 1 shows the variation of CO2 concentration in the absorbent of NaOH 

aqueous solusion. While the CO2 concentration changes little under the condition 

without cylinder rotation, it quickly increases when the cylinder rotates. The variation 

of CO2 concentration becomes faster with increase in the cylinder rotation rate.  

In this exeperimental condition, the gas phase consists of only CO2 and the mass 

transfer resistance can be neglected. Thus it is considered that the increase in the 

CO2 absorption rate with cylinder rotation is caused by the enhancement of mass 

transfer rate in the liquid film. Thus the mass transfer coefficient in the liquid film is 

estimated by the following equation.  
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2 2 2CO L CO CO( )CN Ak C   (1) 

where kL is mass transfer coefficient, 
2COC  and 

2COC  are concentrations of CO2 in the 

bath and at the gas-liquid film interface, respectively. Variation of the mass transfer 

coefficient with cylinder rotation rate is shown in Fig. 2. The mass transfer rate in the 

liquid film linearly increases with rotation rate.  

 
Fig. 1. Variations of CO2 concentration in the bath 

 
Fig. 2. Effect of cylinder rotatin rate on mass transfer coefficient 
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MONITORING IONIC LIQUID SYNTHESES WITH IN SITU  
IR-SPECTROSCOPY – THE INTRICACY OF SOLVENT EFFECTS 

Andreas Ohligschläger, Dario Coenen, Marcel Liauw 

ITMC/RWTH Aachen University, Worringerweg 1, Aachen, Germany, 
ohligschlaeger@itmc.rwth-aachen 

Ionic liquids (ILs) are often synthesized by the alkylation of tertiary amines, 

especially imidazoles, and phosphines. Two neutral substrates form the ionic product 

by the transfer of an alkyl cation following an SN2-mechanism. The Hughes-Ingold-

rules [1] predict that the reaction is accelerated in more polar solvents. Therefore, it is 

expected that the synthesis of ILs is autocatalytic since the product is more polar 

than the substrates. 

Figure 1. Reaction rate profile of the reaction between triethylamine and dimethyl carbonate at 125 °C 
[2]. An increasing section can be observed in the beginning which indicates an autocatalytic behavior. 

Furthermore, a bend at ca. one hour reaction time can be observed 

The kinetics of the IL syntheses starting from dimethyl carbonate and either 

triethylamine [2] or N-ethylimidazole are compared in this work. The reaction 

progress is monitored using ATR-IR immersion probes in an autoclave. The 

evaluation of the reaction rate r shows an increasing part in the beginning, followed 

by an decreasing part. The analysis of the reaction rate constant k reveals that the 

autocatalytic behaviour is based on a kinetic salt effect. Furthermore, the reaction 

rate of triethylamine and dimethyl carbonate shows a bend after certain time. The 

bend can be attributed to a phase change from solvated ion clusters at small product 

concentration to a phase separation of the ionic liquid at elevated concentrations. 

The effect of the phase separation takes place on a microscopic scale, while the 

reaction mixture appears homogeneous. The autocatalytic effect of the ion clusters is 
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more pronounced than the effect of the separated IL phase, which results in a bend 

in the reaction rate. 

Dimethyl carbonate can be used as a green reagent in methylations and 

methoxycarbonylation reactions and is a substitute for phosgene and methyl 

halogenides [3]. The synthesis of halogen-free ILs by the methylation of tertiary 

amines with dimethyl carbonate is patented as the CBILS®-process from the 

Austrian company proionic GmbH (Carbonate Based Ionic LiquidS) [4]. 
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The processing of non-food lignocellulosic raw materials to bioethanol is a promising 

solution both from economic and ethical points of view. The process of bioethylene 

production from bioethanol origined from renewable bioresources has been widely 

studied as an innovative technology and commercialized in several countries. This 

process has many advantages over the conventional one, such as independence 

from the petrochemical sources of raw materials, and the possibility to launch the 

plants of low capacity. Technology is rather simple and environmentally benign, thus 

ensuring much less impurities in the ethylene produced. Assessment of economic 

indicators allows us to conclude that low-tonnage production of bioethylene and its 

high-margin derivatives would have the best market [1,2]. The diversity of 

bioresources, which are potentially applicable to bioethylene production, is growing 

constantly, and the areas to apply the chemicals produced thereof expand. In this 

regard, the bioethanol impurities issue and their impact on the bioproducts becomes 

of particular concern. The influence of typical impurities in biotechnological products 

on their downstream processing should be thoroughly investigated in the course of 

the optimal development of new biotechnologies. 

Figure. 
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In the present work, the influence of impurities in bioethanol produced from oat hulls 

on the process of its catalytic dehydration into ethylene has been studied. The study 

was carried out using an alumina catalyst [3-4] which was found to be sufficiently 

stable in undiluted feedstocks and sufficiently active at 370-450°C [3]. Samples of 

bioethanol were manufactured at the IPСET SB RAS; they were prepared using 

either NaOH, or HNO3 at the stage of oat hulls pretreatment [5]. After rectification to 

94%wt., the bioethanol samples differed in the content of organic and inorganic 

microimpurities. In turn, this had a different effect on ethylene yield and ethanol 

conversion (Fig.). Taking into account the ethanol consumption factor per 1 ton of 

ethylene, a comparative estimation of the necessary mass of plant bioresources for 

obtaining from 1 to 20,000 t of bioethylene was made. Technical and economic 

indicators of the bioethylene production process were obtained from the results of 

pilot-scale testing [4]; based on it, the prospects for commercial production of 

ethylene have been analyzed. 
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Pai Z.P. 
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The studies deal with phosphorus stabilized catalytic systems based on tungsten 

complexes and combined with the quaternary ammonium cations (Q+) acting as 

phase-transfer catalysts. It is known that in situ synthesis of the catalysts using such 

precursors as (H3PW12O40 + H2O2) or (H2WO4 + H3PO4 + H2O2), or (Na2WO4 + 

NH2CH2PO3H2) leads to the formation of a mixture of peroxo complexes with different 

structures, for example: Q3{PO4[WO(O2)2]4}, Q2[W2O3(O2)4(H2O)2], 

Q2{HPO4[WO(O2)2]2} [1-3]. These complexes were isolated and characterized using 

IR, Raman and EXAFS techniques. The complexes comprising the tetranuclear 

anion {PO4[WO(O2)2]4}3– was the most active catalyst for oxidation of organic 

compounds with aqueous hydrogen peroxide [3-4]. 

The results of complex studies of one-stage catalytic syntheses of important 

organic compounds (epoxides, N-oxides of amines, mono- and di-carboxylic acids 

and their derivatives) from petrochemical products and renewable raw materials are 

reported. The catalytic oxidation reactions of organic substrates (cycloalkenes, α-

alkenes, alcohols, bicyclic ketones, tertiary amines, unsaturated fatty acids and their 

esters, terpenes, coumarins) proceed under mild conditions at temperatures not 

higher than 100 °C and atmospheric pressure.  

The studies of the synthesis conditions and structural characteristics of 

tetranuclear tungsten porero xopolyoxo complexes Q3{PO4[WO(O2)2]4} using EXAFS, 

Raman and IR spectroscopic techniques led to establish that the cation nature 

influences the strength of bonding between tungsten atoms with the cation. With the 

cations containing at least one aryl substituent along with alkyl one, a specific 

interaction between protons of pyridine and benzene rings with the anion was 

revealed [5]. In view of this fact it is reasonable to suppose that these are the factors 

(the presence of four peroxo groups in the anion and of the pyridine ring in the 

cation) which are responsible to the high activity of complex 

[C5H5N(CH2)15Me]3{PO4[WO(O2)2]4} to most of the substrates under study. It is not 
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improbable that both of the said factors are of key importance for predicting the 

catalytic activity of tungsten peroxo polyoxo complexes to oxidation of organic 

substrates [6]. 

The results obtained open the way for creation of new generation technologies for 

fine organic synthesis with good economic parameters to meet the modern ecological 

requirements of a low E-factor (kg waste/kg product).  
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Catalytic naphtha reforming process is a vital process for refineries due to the 

production of high-octane components, which is intensely demanded in our modern 

life [1]. Hydrogen and lighter hydrocarbons are also obtained as side products. 

Catalyst is the most important constituent of the reforming process, and many 

researchers have been inventing and investigating new catalysts with better quality, 

as well as lower deactivation. Nowadays the process of catalytic properties improving 

has almost reached its limit: industrial modern polymetallic reforming catalysts 

contain minor quantities of platinum providing high product yield with high octane 

numbers. The effectiveness of the reforming process is providing by its technological 

conditions. Thermodynamically favorable conditions of the target reactions occurring 

is in area of low pressures and high temperatures. Depending on the technology 

used the pressure in reactors could vary from 0.35 to 2.0 MPa. The strategy of 

reforming technology improving goes hand in hand with a pressure reduction. 

However, with the pressure decreasing the coke deposition on the catalyst and the 

catalyst deactivation rate increase. For this reason, the reforming process with a 

fixed bed catalyst is not carried out at a pressure lower than 1.4 - 1.5 MPa. With 

mathematical modelling method using the research of physio-chemical regularities of 

catalytic reforming process under reduced pressure has been done. Industrial 

catalytic reforming unit with catalyst was used as an object of study. The results of 

chromatographic analysis of the hydrocarbon feedstock composition, technological 

modes of production unit operation were used as source data [2]. With mathematical 

model using the pressure effect on the product yield and quality was analyzed [3]. 

Table 1, 2 shows the results obtained with two reforming catalysts using: PR-9 and 

PR-81. 
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Table 1. Pressure effect on the product yield and quality with catalyst PR-9 using 

Pressure, MPa Р=1,6 Р=1,5 Р=1,4 Р=1,3 Р=1,2
Octane number  93,2 93,4 93,6 93,7 93,8

Aromatics, % mass. 60,66 61,01 61,32 61,56 61,81
Hydrogen output, % 1,94 1,97 2,0 2,04 2,07

Coke, % mass. 3,63 3,62 3,64 3,67 3,69
Product yield, % mass. 89,92 90,05 90,19 90,36 90,53

Table 2. Pressure effect on the product yield and quality with catalyst PR-81 using 

Pressure, MPa Р=1,6 Р=1,5 Р=1,4 Р=1,3 Р=1,2
Octane number 93,7 94,1 93,9 94,5 94,5

Aromatics, % mass.  60,61 61,23 61,39 61,58 61,88
Hydrogen output, % 1,94 1,98 2,0 2,04 2,07

Coke, % mass. 3,56 3,59 3,60 3,62 3,65
Product yield, % mass. 90,25 90,52 90,76 91,01 91,16

It could be concluded that the operating pressure deacreasing of the reforming 

process favors the target reactions and promotes process selectivity. Wherein 

pressure decreasing increases coke formation in the reactor according to the Le 

Chatelier's principle, and it could be recommended do not reduce pressure lower 

than 1.4 MPa. 
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Oxidation coupling of methane (OCM) is one of the promising ways for producing 

ethane-ethylene mixture directly from natural gas, without the stage of synthesis gas 

production. For this purpose, a large amount of research has been carried out over 

the last 30 years. In the OCM process methane at high temperatures (> 550 °C) is 

oxidized on a catalysts to produce the C2 hydrocarbons: ethane and ethylene, and 

by-products - carbon oxides [1, 2]. The target products are also involved in oxidation 

processes to form carbon monoxide and carbon dioxide. Since the OCM is a 

homogeneous-heterogeneous process, the experimental studies of kinetic 

regularities and identification of the scheme of process on various heterogeneous 

catalysts is an urgent task. 

In this work, we studied the influence of temperature and contact time on the 

regularities of the process of OCM on the catalyst Sr/La2O3. 

The catalyst 5 % Sr/La2O3 was prepared by method of wet impregnation, the 

calcination time is 4 hours at 700 °C; carrier the La2O3 was prepared by 

decomposition of La nitrate, calcined for 10 hours at 700 °C. The catalyst was 

characterized by physicochemical analysis: an X-ray diffraction (XRD) analysis was 

performed on a Bruker D8 diffractometer using Anton Paar high-temperature X-ray 

chamber; the texture characteristics were determined from nitrogen adsorption 

isotherms measured at 77 K; the mesopore volume was calculated by analysis of the 

curve of the integral pore volume distribution as a function of the pore radius. 

The catalytic activity in oxidative methane coupling (OCM) was measured in a 

fixed-bed quartz tube reactor (5 mm i.d.) at 850-900 °C and ambient pressure [3]. 

The temperature of the catalyst was measured with chromel–alumel thermocouple 

adjusting the outer surface of the reactor at the middle of the catalyst bed. Reactant 

and product concentrations were analyzed by on-line gas chromatograph with 

Porapack Q. The ratio CH4/O2 at reactor inlet is equals 4. 

From the experimental data it follows that with increasing temperature, selectivity 

towards ethane and ethylene increases, and selectivity for carbon monoxide 
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decreases. The ethane selectivity begins to increase at a lower temperature than the 

ethylene selectivity (Figure). Experiments carried out at a low conversion of methane 

shows that C2 hydrocarbons and COx are formed in the process of OCM in parallel 

routes. 

 
Figure. Dependence of products selectivity vs. temperature 

To estimate the equilibrium concentration of reagents thermodynamic analysis of 

reactions occurring in the process of OCM was performed. It is shown that the 

equilibrium content of C2 hydrocarbons (ethane, ethylene) in the studied range of 

temperature and concentrations of methane and oxygen in the sum was insignificant 

value < 0.1 %. During catalytic oxidation of methane experimental concentration C2 is 

higher than the equilibrium value. 

Thus, on the basis of experimental data obtained at a low conversions, it was 

found that the primary products of methane oxidation are ethane and carbon oxides, 

and ethylene is formed as a result of ethane dehydrogenation in various reactions. It 

is shown that the use of the catalyst, in particular Sr/La2O3, allows for more selective 

oxidation of methane to C2 hydrocarbons compared to their equilibrium 

concentrations. 
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regime is described by elementwise conservation equations, directly following from 

(1), and equation of thermodynamic equilibrium d*h = m*ws*1(Ts), where 1(Ts) is the 
equilibrium constant for water-gas reaction at the combustion temperature Ts.  

The equations set is closed with the energy conservation condition, which has 
three forms depending on the flowrate of granular solid. For a low flowrate, when the 
heat capacity of the solid flow is lower than that of air-steam mixture, the sensible 
heat of sold heated to the combustion temperature is recovered with the flow of air-
steam mixture. For higher flowrate of solid, the regime is equivalent to [1]. Still higher 
flowrate when the heat capacity of the solid flow is higher than that of syngas results 
in an unstable regime. 

Example calculations for the methane/air-steam and 2-propanol/air-steam conversion. 

 
  

Isotherms (left to right) Ts = 1100,1300,1500,1700,1900, 2100 K for 2-propanol (a,b) and methane 
(c,d); w0 = 0 (a,c), 0.5 (b,d). Soot formation in shaded area left to the dotted line (a,c). 
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KINETIC CONJUGATION EFFECTS IN OXIDATION OF C1-C2 
HYDROCARBONS 

Ponomareva E., Lomonosov V., Gordienko Yu., Sinev M. 

Semenov Institute of Chemical Physics RAS, Moscow, Russia 
E-mail: katerinaii@inbox.ru 

Investigation of the kinetics of oxidative methane coupling (OKM) is of particular 

interest since it is considered as a convenient model for the study of the processes 

operating via heterogeneous-homogeneous mechanism and includes the steps 

typical of oxidation of any hydrocarbon. Another feature of the OCM is that this 

process starts with the activation of chemically stable methane molecule, the 

reactivity of which is substentially lower in comparison with that of the target products 

(ethene, ethylene). This can bring to the competetiveness of the reactant and product 

molecules at the activation over any active sites present in the system – both surface 

species and active particles in gas. Herewith, the formation of various products 

proceeds through the same intermediates, i.e., free radicals, which present in the 

reaction mixture and affect gas phase reaction rates. Therefore, such complex 

interdependences of possible reactions define the apparent kinetics of OKM. The 

current study has a purpose to reveal a reciprocal influence of the components of the 

reaction mixture on their conversion routes and rates under conditions of catalytic 

oxidation of methane to ethane and ethylene. The mixed NaWMn/SiO2 oxide was 

used as a model catalyst. 

It was shown that homogeneous oxidation of C2 hydrocarbons occures at a high 

rate in an empty reactor at temperatures above 750 °C. However, when quartz or 

catalyst are loaded into the reactor, the conversion rate of both ethane and ethylene 

reduces significantly (see Fig. 1). 

Experiments on the oxidation of ethane and ethylene in excess of nitrogen or 

methane showed that: 

 methane decreases the rate of ethane oxidation (see Fig. 2A), but also a 

strong reciprocal effect of these hydrocarbons on the rate and direction of 

their transformations is observed in the presence of NaWMn/SiO2 catalyst; 

 methane also inhibits gas phase oxidation of ethylene by reducing the 

contribution of chain reactions to the total process rate (see Fig. 2B); in the 

presence of NaWMn/SiO2 catalyst when the rate of CH3 radicals formation 
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from methane is high, their efficient trapping by ethylene takes place leading 

to propylene formation. 

 
Fig. 1. Ethane (A) and ethylene (B) conversion at different reactor loadings:  

1 – empty reactor; 2 – reactor with quartz; 3 – reactor with NaWMn/SiO2 catalyst 

 
Fig. 2. Ethane (A) and ethylene (B) conversion in empty reactor at different gas dilutions:  

1 – С2H6 (С2H4) : O2 : N2 = 5.5 : 11 : 83.5; 2 – С2H6 (С2H4) : O2 : CH4 = 5.5 : 11 : 83.5 

Thus, the presence of complex kinetic conjugation and the apperarance of new 

reaction routes during the joint oxidation of C1-C2 hydrocarbons has been 

demonstrated. 

The experimentally observed effectes are discussed in the framework of the 

detailed kinetic model that accounts elementary reactions of molecule and free-

radical species both in the gas phase and over surface active sites. 
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HOW TO DESIGN AN EFFECTIVE CO PROX CATALYST AND 
REACTOR? 

Potemkin D.I.1,2, Snytnikov P.V.1,2, Konishcheva M.V.1,2, Sobyanin V.A.1 
1Novosibirsk State University, Novosibirsk, Russia, potema@catalysis.ru 

2Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 

CO preferential oxidation (CO PROX) as an important reaction for CO removal 

from H2-rich reformate for low temperature polymer electrolyte membrane fuel cells 

feeding applications. Designing a CO PROX catalyst is a challenging problem in 

terms of substrate-selective catalysis: the catalyst requires to oxidize only ca. 

1 vol. % CO in the huge excess of H2 (60-70 vol. %). In the present report, we would 

like to summarize literature data and our experience in catalyst designing and 

determination of key factors affecting the CO PROX reaction. 

CuO-CeO2 and bimetallic Au-Cu and Pt-Co catalytic were approved to be 

selective and able to provide stable CO removal to level below 10 ppm. The simple 

and effective preparation methods were proposed. Thin catalytic coatings onto 

supports with high thermal conductivity (metal plates and gauzes) were successfully 

applied to extend catalysts temperature operational window and provide stable 

operation. 

According to our and literature data (Fig. 1) conventional Pt-, Pd-, Rh-, Ru-based 

catalysts are not enough selective. This is due to the dense coverage of metal 

surface by adsorbed CO at low temperatures, that inhibits both CO and H2 oxidation. 

The H2 and CO oxidation start together at elevated temperatures when equilibrium 

CO coverage decreases and empty metal appears. 

There are two main strategies to design a selective CO PROX catalyst: 

1) Utilize the CO inhibition effect on H2 oxidation reaction and provide a low-

temperature CO oxidation reaction pathway. It could be done by application of 

bimetallic Pt-M (M = Fe, Co, Ni, Cu, etc.) systems, where second metal is 

responsible for oxygen activation (Fig. 2). Pt-Co was concluded to be the most 

promising one. 

2) Apply metal sites, which are not “very good” in hydrogen adsorption but are 

able to activate CO and O2. Cu and Au were considered as promising 

candidates. Copper-ceria system appeared to be the most interesting. 
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MATEMATICAL MODELING OF REGENERATION OF COKED  
Cr-Mg CATALYST IN FIXED BED REACTORS 

Reshetnikov S.I., Petrov R.V., Zazhigalov S.V., Zagoruiko A.N. 

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, reshet@catalysis.ru 

Catalyst deactivation leads to the loss of its activity and selectivity during catalytic 

reaction. The activity decline can be reversible (phase transition of active component, 

coking) or irreversible (sintering, poisoning, thermal or chemical degradation). A 

reversible deactivation enables catalysts to be partially or completely regenerated by 

heating or changing the composition of reaction mixture. In production of ozone-safe 

chladones (R-134a, R-125 etc.) by gas-phase hydrofluorination of chloroethylenes 

the catalysts, are used containing chromium (+3) and fluorides of metals of Group II. 

Catalyst deactivation in these processes is caused by coking. During its regeneration 

by oxygen it is important to prevent the catalyst overheating, which can lead to 

sintering of active component, and as a result, irreversible loosing its activity. In 

industrial processes, the knowledge of the regeneration kinetics specific type of 

catalyst and catalyst bed dynamics are necessary for optimal design of the reaction-

regeneration cycles.  

The aims of the present work were the following: (i) the determination of kinetic 

parameters of coke burning for Cr-Mg catalyst and parameters of diffusion or mass-

transfer limitation; (ii) the investigation of the influence of technological parameters 

on coke burning and regeneration time in a fixed bed reactor. 

The simulation of the process was performed using the detailed mathematical 

model that takes into account the reaction and adsorption processes in the catalyst 

pellet, heat and mass transfer between gas flow and catalyst surface, oxygen 

diffusion inside the pellet pores, heat release during reactions [1]. The reaction rate 

constant, activation energy, and mass transfer parameters were defined by the two 

independent methods: (i) from experimental data of the coked catalyst regeneration 

in a lab-scale reactor; (ii) from the simulation of experiments of thermal analysis.  

The reaction rate constant of coke regeneration (k=k0e-E/RT) were determined by 

the experiments: the activation energy EA = 31 kcal/mol and k0 = 1.5·109 1/min. 

Analysis of the process occurring in the catalyst bed shows that coke burning 

proceeds in the region of strong diffusion limitations. This is confirmed by DTG and 

TG analysis data (Fig. 1).  
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(a) (b) 
Fig. 1. DTG – (a) and TGA – (b) curves for different size of catalyst pellet:  

catalyst powder (dashed line) and catalyst pellet (solid line) 

The mathematical modeling of catalyst regeneration was performed at following 

conditions: initial coke concentrations are 5 wt % and 15 wt %; the inlet gas 

temperature is 400 °С, and inlet oxygen concentration is 0.98 vol %.  

Thus, the influence of process parameters, e.g. oxygen and coke concentration, 

inlet gas temperatures (Tin), gas flow rate, and pellet size has been studied. It was 

determined that if Tin is higher than catalyst temperature, burning front heats the 

catalyst bed from Tin
 up to maximal adiabatic temperature Tmax=Tin + Tad which 

should not exceed the 500 °С. If the inlet gas temperature is lower than initial 

catalyst temperature the coke burning occurs only near the surface of catalyst 

pellet, because the bed is cooled by the inlet gas flow. This leads to the catalyst 

overheating Tmax>Tin + Tad, and can cause active component crystallization and 

catalyst sintering. Optimal conditions were determined in order to prevent the 

catalyst overheating during regeneration. 
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STUDY OF DIFFERENT KINETIC EXPRESSIONS ON THE 
ACETYLENE HYDROGENATION 

Rijo B.1, Lemos F.1, Fonseca I.2, Vilelas A.3 
1CERENA, Dep. Eng. Química, Instituto Superior Técnico,  

Universidade de Lisboa, 1049-001, Lisbon, Portugal,  
francisco.lemos@ist.utl.pt 

2REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia,  
Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal 

3REPSOL Polímeros, Complexo Petroquímico,  
Aptd. 41 Monte Feio, Sines, Portugal 

In this work a dynamic model was developed to describe a reactor system for the 

hydrogenation of acetylene in an ethylene stream by selective hydrogenation over 

Pd/Al2O3. The system consists of three adiabatic fixed-bed catalytic reactors, in 

series, with cooling between them. This system is integrated with a Steam-Cracker 

unit at the Repsol plant in Portugal and is front-end configuration.  

In order to improve the ethylene selectivity, i.e. to decrease the ethane formation 

from both acetylene and ethylene, the amount of CO is controlled in the process. 

However, the presence of CO decreases the acetylene conversion and influences 

the oligomer formation [1] whose typical composition includes C4–C20 reactive 

oligomers of varying composition, with boiling point range from 120 to 400 °C [2]. 

A pseudo-homogeneous model approximation was used under adiabatic 

operation and assuming that the kinetics can be described by kinetics laws found in 

the literature. In this work, a careful choice was made of the kinetic expressions that 

were studied by Schbib et al. and which ones are best suited to our experimental 

data. After choosing the kinetic expressions, several hypotheses have been 

considered such as: if the reagents, hydrogen and hydrocarbons, will adsorb at 

different active sites (Schbib 1) or in the same active sites (Schbib 2) or if hydrogen 

reacts directly with adsorbed C2H2 and C2H4 (Schbib 3). The kinetics expressions 

used for the acetylene hydrogenation were of the Langmuir-Hinshelwood type or 

Rideal–Eley type, based on the one proposed by Schbib et al. [3]: 
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Table 1. Kinetic rate equations for the selective hydrogenation  
of C2H2 and C2H4 proposed by Schbib et al. 

  

  

Schbib 1 

 

 
Schbib 2 

  

  
Schbib 3 

 

The temperature profiles in each of the reactors in the industrial hydrogenation 

unit and concentration of acetylene in last reactor were computed and compared to 

the actual industrial reactor data, using the kinetic expressions presented previously. 

However, only one of these expressions was able to describe our system, but was 

necessary to fit the kinetics parameters in the equations proposed to Schbib et al. [3]. 

The final model was able to describe the temperature profile and conversion 

inside the reactor not only in steady state and but also when there are disturbances 

on input flow rate, carbon monoxide concentration and inlet temperature in the first 

reactor in the time operation range studied.  
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FISCHER-TROPSCH SYNTHESIS INTENSIFICATION 
IN METALLIC FOAM STRUCTURES 

Oihane Sanz, Ane Egaña, Mario Montes 
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Introduction 
Fischer-Tropsch synthesis (FTS) is a well-known process which transforms 

syngas to liquid hydrocarbons for transportation or further production of more add-
value products. This is a highly exothermic reaction, and its products distribution is 
extremely affected by temperature changes and diffusion limitations of reactants and 
products through the catalyst pores. With the development of contemporary 
catalysts, the possibilities for intensification of the FTS have emerged, motivating 
investigations for potential use of structured reactors, for which the negative effects 
of diffusion limitations and heat removal would be suppressed. Parallel channel 
monoliths offer a narrow channel structure inside which laminar flow takes place, and 
this fact implies external mass-transfer limitation. To increase the mass transfer, as 
well as the radial temperature and composition homogeneity, metallic foams of open 
porosity (85-90 %) are very interesting option. However, the problem linked with the 
effective catalyst weight per foam volume unit to achieve intensification limit in FTS 
has not been studied. Therefore, the main goal of this work is to study the FTS 
intensification in a foam structure to enhance the fuel production. 

Experimental 
Aluminum foams (40 ppi, DUOCEL®, D = 16 mm, L = 30 mm) were loaded by 

washcoating with different catalyst coating thickness from 50 to 90 m (500-
1400 mg). FTS catalysts of this work were prepared by a special wet impregnation 
method developed in our group to produce in a single step the catalyst preparation 
(Co and Re impregnation on the alumina) and the washcoating of metallic structured 
substrates [1]. In a typical synthesis of a catalyst slurry, an aqueous suspension of 
20 % (w/w) of total solids (the active phase precursors Co(NO3)3 and Re2O7, Al2O3 
support and colloidal alumina) is prepared. The nominal weight composition of all 
catalysts is 20 % Co – 0.5 % Re/Al2O3. The structured catalysts were tested in a 
commercial micro-reactior unit (Microactivity Reference® from PID Eng&Tech) at 
220 °C and 20 bar and a spatial velocity of 6 L/h·gcat of syngas with a H2/CO=2 
molar ratio.  
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Results and Discussion 
Figure 1 shows the catalytic results of 

coated aluminum foam structures (40 ppi, 

Vreactor = 6 cm3) as a function of catalyst 

layer thickness. For thicknesses of 50-

70 m, the CO conversion remained 

constant. However, for thicker catalyst 

layer the CO conversion and hydrocarbon 

productivity decreased. In addition, the 

selectivity to methane linearly increased in 

all cases. In washcoated structured 

reactors, increasing the catalyst loading results in thicker layers. Long pores filled 

with hydrocarbons limit the diffusion of CO and heavy products, favoring that of 

lighter ones, especially hydrogen and methane [2]. The internal diffusional limitations 

result in lower reaction rate (decrease in catalyst effectiveness) and decrease in 

selectivity to liquid hydrocarbons [3]. 
On the other hand, the catalyst activity of foam structures were compared with 

parallel channel monoliths coated with the same catalyst amount [1], showing an 

improvement in activity of 45 % (Figure 1). The better properties of the foam structure 

as compared with the monoliths could be related to a better mixing of reactants due 

to the tortuosity of the narrow porous substrate structure.  

Considering the promising results obtained for washcoated foam structure, the 

effect of reaction temperature was studied. The almost isothermal behavior of 

aluminum foams allowed the C5+ productivity to be increased up to 87 KgC5+/m3·h at 

250 °C. 

It can be concluded that foam structures are very interesting for FTS 

intensification. 

References 
[1] D. Merino, O. Sanz, M. Montes, Chem. Eng. J. 327 2017 1033-1042.  
[2] M.F.M. Post, A.C. van't Hoog, J.K. Minderhoud, S.T. Sie, AIChE J, 35 1989 1107. 
[3] M. Mandic, B. Todiz, L. Zivanic, N. Nikacevic, D.B. Bukur, Ind. Eng. Chem. Res. 56 2017 2733-

2745. 

Acknowledgements 
The authors acknowledge the Basque Government (IT1069-16) and the Spanish 

MINECO/FEDER (ENE2015-66975-C3-3-R and CTQ2015-73901-JIN) for the financial support and 
Micromeritics Instruments Corp. for the AutoChem II 2920 awarded. 

Figure 1 

0

10

20

30

40

50

50 m 70 m 90 m 240 cpsi
MONOLITH

X
CO

 (%)

S
CH4

 (%)
Productivity (kg

C5+
/m3·h)

1400

0

1120

840

560

280

mg
catalyst

/reactor

FOAMS

C
at

al
ys

t l
oa

d 
(m

g)



PP-75 

370 
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ESTIMATION THROUGH DYNAMIC-MODEL-BASED  

DESIGN OF EXPERIMENT 

Zhimian Hao, Alexei Lapkin 

Department of Chemical Engineering and Biotechnology, 
University of Cambridge, Cambridge CB3 0AS, UK 
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The conventional kinetic study is time consuming mainly due to two reasons: (1) 

data is typically recorded after a certain duration when the reactor reaches steady-

state conditions; sufficient data is required to achieve an acceptable precision 

because a part of data provides limited information. By contrast, a dynamic model 

can fit the data at any time. There is significant body of literature in process chemistry 

on the use of dynamical reaction data for identification of reaction mechanisms and 

generation of kinetic models, see e.g., [1]. Design of experiment (DoE) can further 

enhance the methodology by identifying the best experiments to improve the 

effective use of experimental data [2].  

The kinetics of CO2 hydrogenation to methanol in a three-phase reactor is used 

as a case study. The gas phase is continuous, while catalysts (solid phase) are well 

dispersed in the liquid phase operated in a batch mode. The solvent is selected 

based on two criteria – low volatility and high methanol solubility. High stirring rate 

guarantees a fast distribution of components between the gas and the liquid phases. 

The mathematical model is formulated in ModelBuilder of gPROMS, describing the 

dynamic behavior of methanol concentration in the liquid phase and carbon species 

in the gas phase. Graaf’s kinetic model [3] is inserted for the reaction, and the 

relevant kinetic parameter is explored using the “DoE – experiment execution – 

parameter estimation” cyclic strategy. The DoE can recommend optimal operational 

conditions (temperature, pressure, space velocity, sampling time points) for 

experiment execution, followed by parameter estimation. With several cyclic 

iterations, an acceptable parameter precision is expected to be achieved with much 

less effort in the experiment compared to conventional methods. 

zh303@cam.ac.uk
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Solid foams as porous materials have been successful thanks to their specific 

thermal, mechanical, electrical and acoustic properties, such as high void volume 

(porosity), up to 97 %, resulting in low specific weight, large geometric surface area, 

intensive heat and mass transport, increased flexibility when comparing with cast 

material [1-3]. Their important advantage is possibility to be made of almost any 

material, such as metal (aluminum, chromium-nickel, nickel, copper), ceramics 

(alumina, cordierite, mullite), polymer (polystyrene, PVC, polyethylene), as well as 

glass and carbon. Therefore, solid foams have been tested as a catalyst carrier for 

many chemical reactions, e.g. oxidation of carbon monoxide, Fischer-Tropsch 

synthesis or selective catalytic reduction of nitrogen oxides (NOx) [1-3]. 

Growing interest in open-cell metal foams considered as catalytic support is 

related to continuous search of alternative for monolithic and packed-bed reactors. 

Previous studies indicated that in terms of mass transfer and flow resistance, foams 

are placed between the packed bed and monoliths of similar geometric surface area 

[1]. In practice, this means that the reactor filled with foam catalyst can be much 

shorter than the monolithic one achieving identical conversion. [4]. 

The experimental procedure was the same as presented in [5, 6]. Six open-cell 

metal foams considered as possible catalyst support were tested: Al-10, Al-20, Al-40, 

Ni0610, NC0610 and NC2733. The experiments were carried out for single-phase 

gas flow. The foam was heated by strong electric current (up to 150 A) flowing 

directly through the metal foam skeleton. Several thermocouples measured 

temperatures of the foam surface and flowing air. Foam morpgology was rigorously 

studied using computer microtomography (CT; SkyScan 1172) and optical 

microscopy. Detailed description of the research can be found in our previous works 

[7, 8]. 
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It was proved that heat transfer of metal foams is much higher than that of 

monolithic structure and even comparable with packed-bed. Despite the geometric 

complexity and material type of foams, their thermal characteristics lie close together. 

Therefore, heat transfer can be described by single equation displaying satisfactory 

accuracy (17 %) for all the foams studied: 

 Nu=1.16Re0.56Pr1/3 (1) 

 
Fig. 1. Comparison of heat transfer for catalytic reactor carriers (foams, monolith, packed-bed) 
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2Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia  

The quest for new cost-effective carbon and nitrogen sources from cellulosic raw 

materials such as agricultural residues of no food value to produce bacterial cellulose 

(BC) in high yield is a key challenge to cut down the cost of expensive ВС [1]. Here 

we utilize a globally abundant, industrially available, renewable and sustainable 

feedstock, the oat hulls. Oat hulls account for 28 % of the grain weight and contain 

up to 35 % cellulose [2]. We have developed a production technology for BC from oat 

hulls, involving four basic unit operations: (1) chemical pretreatment; (2) enzymatic 

saccharification; (3) mixed-culture fermentation; (4) ВС purification (Fig. 1). The 

pretreatment was run in 250-L standard vessel equipment under atmospheric 

pressure, sequentially with 4 wt % HNO3 and NaOH solutions. The pulp yield was 

24 %, the pulp comprising 93.2 % -cellulose. The pulp was fermented in a 100-L 

fermentor. The concentration of reducing sugars in the enzymatic hydrolyzate thus 

obtained from the pulp was 32.2 g/L, as measured by spectrophotometry. The mixed-

culture fermentation was performed with Мedusomyces gisevii that exhibits an 

adaptive potential, which is crucial for the sustainable production at an industrial 

scale [3]. The BC yield was 10 % of the reducing sugar concentration on a dry matter 

basis. The BC was purified sequentially with 2 wt % NaOH solution, water, dilute HCl 

(рН 3) solution, and water again. An optimistic yield of BC was obtained: 0,95 ton of 

98 % wet product per 1 metric ton of oats hulls. In this case, BC features a high 

quality: 90 % crystallinity index and 100 % I-phase, suggesting a superior quality of 

the resultant BC and successful engineering solutions at each technological stage of 

the BC production from oat hulls.  
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Fig. 1. Process flow diagram for producing bacterial cellulose from oat hulls 
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Suzuki cross-coupling is an important reaction of C-C bond formation that uses 

aryl halides and aryl boronic acids as starting compounds. Suzuki reaction is often 

used in the synthesis of APIs and new functional materials [1]. Homogeneous Pd 

complexes are traditionally used as catalysts for the Suzuki reaction with high yields 

of desired products [2]. Last decades the development of new ligandless palladium 

catalysts is of high importance, since they can be easily separated from the reaction 

mixture and reused [3]. In order to improve the efficiency of cross-coupling 

processes, bimetallic ligandless catalysts can be used since they allow increasing the 

lifetime of catalysts due to the decrease of palladium leaching, carrying out cross-

coupling at milder reaction conditions, increasing activity and selectivity in 

comparison with monometallic analogues. 

In this work we investigated the hypercrosslinked polystyrene (HPS)-supported 

mono- (Pd, Au) and bimetallic (Pd-Au) catalysts of Suzuki cross-coupling of  

4-bromoanisole and phenylboronic acid. HPS is a polymer network in which "pores" 

are formed spontaneously during polymer synthesis. A unique property of HPS is its 

ability to swell in various solvents, which facilitates the incorporation of organo-

metallic compounds into the HPS matrix. Due to its high degree of cross-linking, 

which can exceed 100 %, the HPS consists of rigid nanopores ("nanopores") that 

create interfaces between the pore volume and polymer walls – nanostructures 

serving as nanoreactors for particle growth [4, 5]. Recently, we have shown HPS to 

be a promising support for Pd nanoparticles for different catalytic applications 

including the Suzuki reaction [6-8]. 

The Suzuki cross-coupling reaction was carried out at ambient pressure while 

using low-molecular weight alcohols and water as solvents. Kinetic study was carried 

out at variation of type and concentration of base, solvent nature and composition, 
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reaction temperature and gas phase composition. During the variation of solvent 

nature, in the case of Pd-containing HPS-based catalysts, it was found that the use 

of mixture of low-molecular weight alcohols (e.g. EtOH, i-PrOH) with water allows 

relatively high activity at mild temperatures (60-70 °C). Moreover, best results were 

obtained for the catalyst synthesized while using PdCl2(CH3CN)2 as the precursor. In 

this case, the use of HPS as a support allowed achieving more than 98 % conversion 

of aryl halide for less than one hour of reaction duration at mild reaction conditions 

(60 °C, NaOH, solvent EtOH/water mixture) and at the absence of phase-transfer 

agents. 

However, independently of the precursor nature, Pd(II) was assumed to be the 

direct source of the main catalytically active form of Pd (Pdn clusters formed in situ) in 

the case of unreduced Pd-containing samples. For the samples, which were 

preliminarily reduced in hydrogen flow, the use of HPS as a support allowed 

formation of a large number of Pd nanoparticles as well as of Pdn clusters (shown by 

the XPS method), and the latter were found to be responsible for the observed high 

activity of reduced Pd/HPS catalysts. 

In the case of reduced Pd-containing catalysts, the influence of the second metal 

(gold) addition was studied. More than 2.5-fold higher activity among the preliminarily 

reduced catalysts was achieved in the case of bimetallic Pd-Au catalysts in 

comparison with monometallic ones. Besides, the possibility of catalyst separation 

and multiple reuses was also investigated. It was revealed that synthesized bimetallic 

HPS-based catalysts can be reused four times without essential loss in activity.  
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In the last years in Russia tendency to high-octane and high-quality gasoline 

(octane number – 95 and 98) production is occurred. Producers have to modify the 

fuel mixing blend recipes, redistribute raw materials between the units in secondary 

oil refinery, optimize the management process and gasoline production, as well as to 

upgrade existing refineries for the gasoline production. 

The most efficient way for solution of multi-factor problems of optimization and 

forecasting of gasoline production can be to apply the method of mathematical 

modeling and the use of computer modeling system on a physico-chemical basis [1]. 

During the research with the use of computer modeling system “Compounding”, 

planned and actual gasoline blending recipes for 2015-2016 were analyzed, 

according to this recipes gasoline production was realized at one of the refineries of 

the European part of Russia. Two gasoline brands: AI-92 and AI-95 were produced 

at the refinery.  

For further research 4 months of gasoline production were chosen: the analysis 

of planned and actual blending formulations was made, as well as a comparison of 

the main properties of the produced gasoline was made (RON – octane number, 

research method; MON – octane number, motor method; SVP – saturated vapor 

pressure). For gasoline of all brands (actual results) octane number satisfies the 

requirements of state standard No.°32513-2013 “Motor fuel. Gasoline unleaded. 

Technical conditions”, and the content of aromatic hydrocarbons (HC) and benzene 

satisfy the requirements of Technical regulations of the customs Union No.°013/2011, 

but for AI-95 the value of octane number higher than the required (95 points) on 1.6-

2.4 points. Thus, we can see that there is a significant overruns of high-octane and 

expensive raw flows. For larger production of high-octane gasoline in a more 

resource-efficient way, it is necessary to correct the gasoline blending recipes. 

Correction of gasoline blending recipes was realized in the direction of increasing 

the production of high-octane, high-quality gasoline AI-95 and AI-98. 

During the blending recipes correction, the following difficulties, which are 

associated with the features of gasoline production at this oil refinery, arose: 
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 During the correction there was frequent problem of excessive unacceptable 

content of aromatic hydrocarbons in gasoline because of high amount of high-

aromatic raw streams. 

 For both brands there is a significant excess of the required octane number 

with large volumes of production. 

In connection with the above difficulties, during correction of gasoline recipes  

AI-95 reformate 1 flow has been replaced by raw materials of this process. 

The results of the correction are presented in tables 1. 
Table 1. Gasoline volume production before and after recipes correction 

Flows 
Before correction After correction 

AI-92 AI-95 AI-92 AI-95 AI-98 
wt. % 

Reformate 53.9 61.9 51.4 62.1 64.2 
Fluid cracking gasoline 16.5 4.6 19.3 7.1 – 
Light isomerizate 10.2 5.4 8.5 0.8 16.2 
Isomerizate 11.7 14.2 13.7 16.0 6.6 
Reformate 1 6.1 2.7 7.1 – – 
Raw reformate 1 flow – – – 4.2 – 
TAME 1.7 11.3 – 9.7 13.0 

As can be seen from tables 1, after recipes correction the feedstock flows are 

redistributed in such a way that 22.7 wt. % of the total gasoline is of high octane 

brand of AI-98 at the initial lack of the brand in production. The change in production 

for brands AI-92 and AI-95 was 14.68 wt. % and 35.76 wt. % respectively. 

As a result of the correction, the initial overruns of expensive raw materials was 

eliminated; 22 215 tons of high-quality gasoline of the AI-98 brand were produced 

from this raw material. All the basic properties of gasoline after correction comply 

with all norms and requirements. Reserve of octane number is around 0.2 points, it 

will allow in case of change of the raw material to produce a conditional gasoline. 

With the using of the developed complex modeling system, the necessary 

correction of gasoline blending recipes was carried out. The developed recipes in 

each case conform to the concept of the most efficient use of raw materials, 

depending on their quality and available quantity. 
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STUDY OF KINETIC PARTICULARITIES OF LOW-TEMPERATURE 
WGSR OVER CERAMOMETAL CATALYSTS:  

EFFECT OF CATALYST SIZE 
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Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, Tikhov@catalysis.ru 

Water-gas shift (WGS) reaction is one of the primary industrial steps of hydrogen 

production. Many works devoted to kinetics and properties of catalysts for this 

process were summarized in a series of reviews [1-4]. Most of the catalysts are 

usually comprised of Cu, Zn and Al oxide composites prepared by coprecipitation or 

impregnation. One of the problems of the low temperature WGSR reaction is a low 

activity of the conventional granulated CuZnAl catalyst per unit volume of the catalyst 

bed [3,4] explained by a low loading density and a poor access of reagents into the 

bulk of granules due to internal diffusion [5]. One of the possible way to increase 

catalyst activity is the use of ceramometal catalysts. Such catalysts could decrease 

diffusion limitation due to specific system of transport macropores and mesopores.  

In this work, we studied the influence of the temperature reaction, contact time 

and catalyst size on kinetic particularities of low-temperature WGSR over 

development CuAlO/CuALceramometal and commercial Cu-Zn-Al-O (CZA) catalysts. 

Catalytic properties in WGSR were studied in a laboratory flow setup with the gas 

chromatographic analysis. The catalysts were activated in the mixture of 5 % H2 in 

He at 3000-4000 h–1 with a temperature ramp of 2/min up to 270 °C for 2 h. Activity 

was measured at a pressure of 1 bar in the mixture of CO:Н2О:Н2 = 8:42:50 at a 

steam/gas ratio of 0.6–0.7; a catalyst (0.14–0.25 mm fraction and 3,2×3,2×5 мм) 

mixed with quartz sand. The height of the catalyst bed diluted with quartz was 3 cm, 

and the reactor diameter was 20 mm.  

The total pore volume of the monolith was calculated from the values of true and 

apparent densities. True density was measured using a helium pycnometer – 

Autopycnometer 1320 (Micromeritics). The fraction of micropores and mesopores 

(called for brevity the “mesopores) as well as the specific surface area (SSA) were 

determined from adsorption isotherms of nitrogen recorded at 77 K using an ASAP-

2400 Micromeritics instrument. The macropore volume was estimated from the 

difference of the total and mesopore volume.  
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Table 1. Textural properties different samples of CuAl cermets and  
commercial Cu-Zn-Al-O (CZA) catalysts 

Sample  
(time MA, min) SSA, m2/g Vmeso, cm3/g Vmacro, cm3/g gran, g/cm3 cat.bed, g/cm3 

CuAl(3) 14.4 0.02 0.05 4.24 ~2.3 
CuAl(6) 9.9 0.01 0.06 4.22 ~2.2 
CuAl(9) 9.0 0.02 0.07 4.00 ~2.1 

CuAl(12) 15.7 0.04 0.04 3.87 ~2.0 
CuZnAl 122 0.25 <0.001 2.00 ~1.0 

Catalyst was characterized by the apparent rate constant of the first order with 

respect to CO, which was determined taking into account the reversibility of the 

reaction. The reaction rate constant was calculated under the assumption that the 

reactor operated in the plug flow regime. All catalytic data are given for the catalysts 

that reached a steady state activity (after continuous operation for at least 25 h). The 

bulk density of the fraction of catalysts without quartz varied from 1 to 2.3 g/cm3 

(Table 1). Activity of granules having a prismatic shape and dimensions 

3.2×3.2×5 mm3 was also studied in the special Temkin single-row reactor [6]. Due to 

a considerable variation of the bulk density at close weights, contact time also 

changed significantly, from 0.02 to 0.05 s. It was shown, that ceramometal catalyst 

more active in comparison with commercial Cu-Zn-Al-O catalyst at the all range of 

temperatures (150-240 °C). 
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CO2 reforming of methane, also named dry reforming of methane, is a method of 
producing hydrogen from the reaction of carbon dioxide with methane (DRM) 

↔ 2 2 . The major problem associated with this reaction is the 
sintering of the active phase and carbon formation [1]. The carbon generated during 
this reaction can be the result of direct decomposition of methane ↔ 2 	  
or the Boudouard reaction	 2 	 ↔ 	  [1, 2]. Many ideas were put forward by 
scientists to develop catalysts bearing both high activity and high resistance to coke. 
The activity of a catalyst is related to the metal surface area [2, 3]. This implies that 
the catalytic activity is proportional with the high dispersion of metal particles. The 
aim of the present work is to investigate the use of NiAl-HDL and NiFe-HDL, 
previously prepared by co-precipitation method with Ni2+/Al3+=2 and pH=12. The 
products obtained after heat treatment at 800 °C were characterized by XRD, ICP, 
TPR, BET, SEM-EDX and TEM. After reduction, the catalysts were evaluated in the 
reforming of methane reaction under continuous flow with CH4/CO2 ratio equal to 1, 
at atmospheric pressure and a temperature range [400-700 °C]. At 700 °C, the 
catalysts showed significant CH4 conversions, i.e, 87 % and 79 % respectively for 
both NiAl-HDL and NiFe-HDL respectively; this was compared to 91 %, and 84 % for 
CO2 conversions. Despite NiAl-HDL catalyst exhibiting rather high catalytic activity 
compared to NiFe-HDL, this latter showed a good resistance to metal sintering and 
carbon deposition. 
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The activity of ICI Caldaie started 60 years ago in the business of high 

temperature and high pressure boilers (up to 850 °C and 30 bar). Nowadays ICI 

Caldaie is recognized as a world leading industry in this business.   

In the early 2000’ ICI Caldaie became aware that chemical reactors were the 

proper and natural way to exploit the high level reached by its R&D department and 

started a dedicated laboratory called “ICI LAB”. 

Since the beginning of the activity “ICI LAB” created synergies between its 

academic partners and the industrial department of ICI CALDAIE, becoming a player 

able to have an holistic approach to the reactors business, starting from joint design 

solutions, through feasibility studies and up to the manufacturing and industrialization 

of the reactors. Partnerships with universities, research centers and other industries 

all over the world have led to many projects (Internal [1], National [2],[3], European 

[4],[5]) focused on the realization of chemical reactors.  

Thanks to its fully-equipped laboratory and a rapid setup manufacturing unit, 

provided with data acquisition and analyzing tools, the implementation and testing of 

new developed solutions is now a routine at ICI Caldaie. 

The normal course leading to the development of a new reactor foresees the 

following steps: Identification and evaluation of a potential product and its 

applications – Market analysis – Feasibility study – Consortium creation – Project 

preparation – Sharing technology and knowhow – Joint development – Patent 

application – Design and Prototyping – Lab testing – Integration and Installation – 

Field test – Production and Commercialization. 

The first field of application was identified in the onsite hydrogen production from 

natural gas and Bio gas. Different reactors for hydrogen production were developed 

according to different sizes (from 3 to 50 Nm3/h) and different grades of purity for 

different hydrogen applications. 

The more traditional designs based on fixed bed catalyst with temperature up to 

850 °C and pressure up to 2 bar are now running alongside with innovative designs 
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OF AN AGGRESSIVE LUNG CANCER 
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San Pedro Zacatenco, Mexico City, * jtapia@cinvestav.mx 

Lung cancer is, worldwide, the leading cause of cancer deaths, i.e., every year, 

lung cancer causes more than 1.6 million of deaths [1]. The poor prognosis of this 

type of cancer gives rise to a five-year survival of the patients [2]. Ineffective methods 

for early detection and lack of curative treatment for advanced disease are the 

primary reasons of this cause of death, and hence are the main challenges to 

overcome for the academy and pharmaceutical industry [3]. Nanoparticles have, 

nowadays, gained attention because of their potential during different drug delivery 

applications, especially in cancer theranostics (therapy and diagnosis) [4]. 

Nevertheless, there are yet challenges to overcome before their use at the human 

level: namely, there is not a clear understanding of their biocatalytic and kinetic 

performance when interacting with the cancer tumor during in vivo experiments. 

This work aims at giving information on the effect of Au coated on Fe3O4 

nanoparticles (NPs), functionalizing them with doxorubicin to treat an aggressive lung 

cancer cell line. It is worth mentioning that during the functionalization of NPs there 

was used folate to give them more affinity to be sorbed on cancer cells rather than on 

healthy cells.  

The co-precipitation method is used to synthesize the NPs. Besides, the Au 

precursor used to coat Fe3O4 was a gold (III) salt. Au layers on Fe3O4 were added by 

using a seed-mediated approach. The core-shell nanoparticles (CSNPs) of Au/Fe3O4 

were, then, characterized by ultraviolet-visible (UV-vis) absorption spectroscopy,  

X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution 

transmission electron microscopy (HRTEM).  Before the evaluation of these CSNPs 

during the treatment of a lung cancer cell line, they were transferred into an aqueous 

solution to be bio-functionalized with doxorubicin, an effectively cytotoxic against 

small cell lung cancer (SCLC) cell lines. Therapeutic effect of these functionalized 

CSNPs was evaluated by using an MTT assay for assessing metabolic activity of the 

lung cancer cell line H69. Then, preliminary in vivo studies are considered to 
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understand the performance of this nanomaterial system in nude mice. First, 

subcutaneous tumors of Small Cell Lung Cancer (SCLC) were generated in nude 

mice (Foxn1nu: Nu/Nu). The human cell line was identified as NCI-H69 [H69] 

(ATCC® HTB119™). Second, the distribution of gold based core-shell nanoparticles 

in the studied mice model was visualized by Magnetic Resonance Imaging (MRI). 

As primary results, characterization indicated the presence and favorable 

dispersion of Au on the surface of Fe3O4 nanoparticles, which could be related to 

their efficient functionalizing with doxorubicin-folate. MTT assays showed the 

capability of the nanoparticles decreasing the metabolic activity of lung cancer cells. 

Related to in vivo results, the subcutaneous tumors of a SCLC formed as expected in 

the nude mice. MRI elucidated how the NPs were distributed, giving inferences on 

their residence time in the mouse model. In control mouse model, NPs were mainly 

located at the kidney; at 8 hours, there was observed the largest concentration of 

NPs, and at 24 hours, NPs left out the mouse model by urine. In the mouse model 

with the subcutaneous tumor, the NPs were mainly concentrated in the tumor area, 

which was attributed to the enhanced permeability and retention (EPR) phenomenon. 

EPR is considered to be the driving force for NPs to reach and accumulate in the 

tumor, through either passive or active targeting [5]. 
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PARTIAL OXIDATION OF METHANE BY Ir-DOPING ON La2O3/CeO2 

NANOFIBER CATALYST 
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1King Abdullah University of Science and Technology (KAUST), Clean Combustion 

Research Center, Thuwal 23955-6900, Saudi Arabia.  
E-mail: haoyi.wang@kaust.edu.sa 

2King Abdullah University of Science and Technology (KAUST), KAUST Catalysis 
Center (KCC), 4700 KAUST, Thuwal 23955-6900, Saudi Arabia 

Oxidative coupling of methane (OCM) is an important process to directly convert 

methane to higher hydrocarbons in the presence of oxygen. OCM mainly produces 

the desired product ethylene with some side products such as acetylene, propene, 

and COx. La-based catalysts are considered potentially viable to commericalize the 

OCM process and nanostructured La2O3/CeO2 catalysts showed superior 

performance over traditional La-based catalysts. However, the latter nanostructured 

catalysts still could not satisfy the yield and selectivity of C2+ to achieve commercial 

viability. Noon et al. [1] synthesized La2O3/CeO2 nanofibers which could achieve C2+ 

selectivities and yields of up to 70 % and 18 %. However, by doping increasing 

amounts of Ir up to 1 wt %, the products shifted from OCM, mainly C2, to partial 

oxidative of methane (CPO), which is synthesis gas [2]. This demonstrated the 

possiblity of a new CPO mechanism correlated with OCM, which was different from 

previous literature. The present study investigates the chemical kinetics and 

mechanisms for both OCM and CPO in order to further understand this transition 

process. This work proposes a detailed reaction mechanism describing this transition 

process dependent on the amount of Ir doping. 

The model is developed by combining OCM and CPO mechanisms from various 

literature. Each reaction is analyzed to validate the mechanism based on the 

experimental results of spatial concentration and temperature profiles with different 

amount of Ir doping. The results could provide new insights correlating both OCM 

and CPO under their complex reaction chemistry.  
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PROCESS DESIGN FOR SEPARATION AND PURIFICATION OF 
NATURAL VITAMIN E BASED ON COMPETITIVE  

ADSORPTION MODEL 
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Natural vitamin E (VEH) has been used as a bioactive compound because of their 
strong anti-oxidation activities [1]. VEH is industrially recovered from distillate, 
byproduct of vegetable oil refining, by multi-stage molecular distillation at high 
temperature (100-250 °C) [2]. However, VEH recovery yield is low (about 50 %), and 
several impurities with similar separation properties remain (about 65 wt %). We 
proposed a new recovery method by adsorption/desorption of VEH using porous type 
strongly basic resin at low temperature (50 °C) [3]. In this method, VEH recovery yield 
was improved to be 84 %, and impurity was reduced to 22 wt %. Impurity was only 
free fatty acid (FaH) which competitively adsorbed on the resin with VEH. In addition, 
a kinetic model considering the competitive adsorption of VEH and FaH was 
constructed and described that each adsorption zone of VEH and FaH was found to 
be separately formed in the column [4].  

In this research, in order to improve 
VEH purity, we have designed a 
multistage column system based on the 
simulation by the kinetic model. Figure 1 
shows the simulated concentration 
profiles along the length of the column 
using model feeds assumed to be 
distillate from soybean(a) or palm(b). 
FaH was localized upstream of the 
column, and VEH was localized 
downstream of the column. The model 
well simulated each adsorption zone 
under various feed compositions. If the 
column was separated by the dashed line, high purity VEH can be obtained from the 
downstrean of the column. Based on these calculation results, we have designed 
multistage column systems packed with the resin (Diaion PA306S, total amount of 
20 g-wet) as shown in Fig. 2. In the adsorption process, the model feed solution was 
fed from the bottom until the top of the multistage column. In the desorption process, 
the acetic acid solution was supplied to the top of the column A in each system. The 

Fig. 1. Concentration profiles of each  
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REACTION RATE ENHANCEMENT IN GAS-LIQUID-LIQUID-SOLID 
FOUR-PHASE CONTINUOUS FLOW REACTOR 

Hiroshi Yamada1, Haruka Kashifuku1, Tomohiko Tagawa2 
1Chemical Engineering, Nagoya University, Nagoya, Japan, 

yamada.hiroshi@material.nagoya-u.ac.jp 
2National Institute of Technology, Toyota College, Japan 

The reactant (carbobenzoxy phenylalanine) is soluble in an organic solvent and 

hydrogenated to the product (phenylalanine) using solid catalyst. Phenylalanine is 

not soluble in the organic solvent, so it needed to be dissolved in an aqueous phase. 

This was the gas-liquid-liquid-solid four-phase system. Mass transfer becomes more 

complicated in comparison to three-phase reactors as the catalyst needs to efficiently 

contact a gas phase as well as two immiscible liquid phases. The catalyst surface 

properties (hydrophilic versus hydrophobic) also play an important role in the reaction 

related to the wetting efficiency of the liquids at the solid interface [1]. Gas-liquid-

liquid cocurrent upflow reator was used. 

When hydrophobic catalyst support was 

used, the catalyst surface was preferentially 

contacted by the organic solvent phase. 

Contact with the aqueous phase was poor. 

The efficient removal of the reaction product 

was prevented. This led to deactivation of 

the catalyst due to the product being 

deposited on the catalyst surface. When 

hydrophilic catalyst, Pd/Al2O3, was used, 

stable performance with no observed 

degradation in conversion was observed. 

However, the hydrophilic catalyst, Pd/Al2O3, 

was found to have a lower conversion than 

the hydrophobic catalyst, Pd/C, in early 

usage. 

To improve Pd/Al2O3 (3 mm in diameter, 

3.2 mm inlength) reaction rate, inert partice 

was inserted to the catalyst bed. Object of 

 

Fig. 1.  Catalyst bed 
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Inert particle was calming the gas and liquid flow patern and incresing the gas and 

liquid velocity. Four kinds of glass beads were used as inert particle. There diameter 

were 5.0 mm, 1.0 mm and 0.3 mm. Figure 1 shows the catalyst bed diluted with 

0.3 mm glass beads. 3 mm glass beads was settled at the bottom of the catalyst bed. 

Column inner diameter was 2.0 cm. Gas flow rate was 1.7×10–6 m3/s. Liqud flow rate 

ratio of water to organic solution was 3. 1-octanol was used as organic solvent. 

Reaction temperature was 323 K. 

Gas and liquids hold up was 

measured to determined the 

residence time. Water was the 

continuous phase in this reaction 

system. Liquid hold ups were 

increased with increse of liquids 

flow rate. Each liquid residence 

time was calculated from holdup 

and flow rate. Total liquids flow 

rate were varied and conversion 

was measured in each liquid flow 

rate. Figure 2 shows the effects 

of the organic solvent residence 

time on the conversion. Two type 

of catalyst bed were used. 

Diluted bed is shown in green 

mark and catalyst only bed is 

shown in blue mark. Conversions 

were linealy increased with 

increase of the residence time. Slopes of the lines show the reaction rate. The 

reaction rate has 0th order dependence to the reactant concentration. The raction rate 

was increased 1.6 times by using glass beads. 
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ELECTROPHYSICAL METHODS OF PRE-TREATMENT OF SEEDS 

Yemelyanova V.S., Dossumova B.T., Shakiyev E.M., Baizhomartov B.B., 
Shakiyeva T.V. 

"Scientific and Production Technical Center "Zhalyn" LLP,  
Almaty, Republic of Kazakhstan, E-mail: niinhtm@mail.ru 

Currently, the ecological situation is characterized by a high level of 

anthropogenic impact on agroecosystems, which brings with it a number of negative 

consequences for the environment, leads to an increase in the number of 

phytophages and the prevalence of pathogens. 

Therefore, in recent decades, the search for biophysical techniques and 

technologies aimed at realizing the genetic potential, increasing non-specific 

resistance to abiotic and biotic stresses, increasing the adaptive potential of plants 

for the purpose of growth and stabilization of the harvest has been increasingly being 

pursued. 

Currently, one of the priority areas in science and technology is the study and 

practical development of new, increasingly short-wave (EHF) ranges of 

electromagnetic radiation. This trend, above all, refers to the waves of the EHF-

range. 

For the first time we studied the reaction of plants of different varieties and 

species of spring cereal crops to presowing seed treatment by electrophysical 

methods – electromagnetic waves of the EHF-range in the presence of nanosized 

magnetic composites stabilized by humates.  Optimal regimes of the electrophysical 

effect on the stability of seeds of cereal grains to the diseases of fungal etiology 

depending on the radiation parameters and exposure time are determined. 

The obtained results showed that EHF-irradiation of seeds improves the seeding 

qualities, increasing the germination energy depending on culture and variety up to 

12 %, and laboratory germination up to 9.6 % in comparison with the control variant 

for a batch of seeds with reduced seeding qualities. The positive effect of seeds 

irradiation on their sowing qualities, the growth and development of plants, and the 

resistance of seedlings and plants to damage by root rot increases their safety, 

contributing to an increase in this indicator by the harvesting period in wheat in the 

epiphytoty of up to 15 % and barley to 11 %. 
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The water retention capacity of wheat and barley plants increases with respect to 

control in the variants with EHF-irradiation by 7-15 %, which indicates an increase in 

the level of drought resistance of experimental plants. 

The effect of electrophysical methods in the presence of magnetic composites 

and humates on the seeds of grain crops, unlike chemical protectants, had a 

prolonged effect and increased the resistance to airborne pathogens. 

The effect of physical methods on seeds before sowing, namely irradiation of 

seeds with electromagnetic waves of the EHF-range in the presence of magnetic 

composites and humates, with a pulsed magnetic field in the presence of magnetic 

composites and humates contributed to an increase in the yield of spring wheat by 

15.4 and 10.1 %, and barley – by 14.3 and 10.8 %, respectively, relative to control, 

which was higher (by 8-13 %) or at the level of variants with the use of growth 

regulators and protectants. With the germination of seeds, there is an acceleration of 

metabolic processes, especially in the early stages of development. Such a directed 

magnetic field is the force that awakens the dormant biological forces of grain or 

seeds, awakens even before the grain enters the earth. This is precisely the active 

effect of magnetic fields on the vital functions of seeds. 
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MAGNETIC ENRICHMENT OF SLUDGE WASTE FROM TPP TO 
OBTAIN A CONCENTRATE OF RARE AND SCATTERED ELEMENTS 

Yemelyanova V.S., Dossumova B.T., Shakiyev E.M., Baizhomartov B.B., 
Shakiyeva T.V., Kalinichenko O.G. 

"Scientific and Production Technical Center "Zhalyn" LLP,  
Almaty, Republic of Kazakhstan, E-mail: niinhtm@mail.ru 

Rare metals determine the level of modern materials science and are used in the 

production of materials for microelectronics, radio engineering, electrical engineering, 

nuclear energy, etc. Sufficiently promising raw materials for these purposes are coal 

ash. The paper presents the results of studies on the possibility of extracting rare and 

rare-earth elements from ash of Ekibastuz coal containing from 40 to 63 % of mineral 

components. When burning dusty fuel at 1200-1700 °C, solid wastes of two types are 

formed: fly ash and slag. Approximately 80 % of the mineral part of the coal passes 

into fly ash, trapped in cyclones and electrostatic precipitators, and up to 20 % 

passes into slag, which accumulates in slag bins under the furnace. Then, the ash 

and slags are transferred to ash dumps by the hydraulic removal method, where they 

are stored in the open air or under a layer of water [1]. Ashes of 95-99 % consist of 

Al, Fe, O, Ca, Ti, Mg, S, K, Na. When coal burns, a part of trace elements (Sc, Sr, Y, 

La, Ti, Zr) are concentrated in the slag. Other elements (Ga, In, Tl, Ge, Sn, Pb, etc.) 

at a temperature above 100 °C are removed from the high-temperature zone and 

condense in electrostatic precipitators at 110-120 °C, fly ash is enriched by these 

metals. 

In practice, enrichment can be carried out by various methods: gravity, flotation, 

magnetic and electrical separation, chemical enrichment, etc. Magnetic enrichment of 

mineral raw materials is one of the most environmentally friendly methods of 

processing raw materials. Ash-slag materials of TPPs containing rare-earth elements 

are mostly weakly magnetic. 

We have shown that, when vortex electromagnetic reactors are used, the initial 

materials (ash and slag) are grinded to particle sizes from 10 to 1 m in the presence 

of an extractant and paramagnetic particles in an oxygen or air medium, a complete 

transition of non-ferrous metals to the extractant takes place within 5-10 min, and in 

the slag there are only oxides of calcium, aluminum and silicon. In an 

electromagnetic vortex reactor, the raw material undergoes a triple action: 1. Variable 
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electromagnetic field; 2. Constant magnetic field of working bodies from 1 to 10 mm; 

3. Mechanical impacts of many working magnetic bodies in the working chamber of 

the reactor. As a result of the triple action in the reactor, the activation of substances 

at the electronic level takes place. In the presence of paramagnetic particles, the 

process is carried out in a resonant regime. Non-ferrous metals are extracted with a 

solvent, and after the addition of water, in addition to the iron compounds, it is 

extracted into an aqueous solution, the evaporation of which produces a concentrate 

of rare and scattered elements.  
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CONVERSION OF HYDROCARBON LIQUIDS TO SYNTHESIS GAS 
BY PARTIAL OXIDATION IN A MOVING BED REACTOR 

Zaichenko A.Yu., Podlesniy D.N., Zhirnov A.A., Salganskaya M.V.,  
Tsvetkov M.V., Polianczyk E.V. 

Institute of Problems of Chemical Physics RAS, Chernogolovka,  
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Conversion of hydrocarbon liquids by means of partial oxidation in superadiabatic 

regime of filtration combustion (FC) was studied experimentally using 2-propanol as 

a model. Superadiabatic heating is achieved in a counterflow reactor with a moving 

bed of granular solid with non-premixed supply of air-steam mixture and fuel [1]. The 

experimental setup is schematically presented in Fig. 1. 

1 – data acquisition,  
2 – ADC,  
3 – steam supply,  
4 – mirror screen,  
5 – quartz reactor,  
6 – fuel supply,  
7 – ash bin,  
8 – rotary grate,  
9 – fuel storage,  
10 – control valve,  
11 – air flowrate meter,  
12 – compressor 

The 66-mm-id vertical shaft kiln reactor (5) made of quartz covered with an 

aluminum foil mirror screen (12) was filled with a granular inert solid, 7...10-mm 

chamotte crumbs. The inert material was controllably discharged from the lower part 

of the reactor with the rotary grating; the level of the granular bed was maintained 

constant by charging atop the same volume of fresh solid. After an initial heat pulse, 

air and steam were supplied from the lower part and fuel, 2-propanol, supplied at the 

rector center. The fuel supply rate was measured prior to an experiment and checked 

as the average consumption. The temperature in the reactor was measured using 

Type K thermocouples. Syngas was sampled from the upper part of the reactor and 
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further analyzed using a GC-CRYSTAL 5000 chromatograph. C2-C5 hydrocarbons 

can be detected with an accuracy of 0.01 % vol. Similar embodiment was used for 

conversion (gasification of a pulverized coal [2]. 

The ignition was achieved by 

charging a preheated mixture of granular 

solid with charcoal and started air supply. 

Fig. 2 shows a typical time dependence 

of the temperature on thermocouples 1 to 

6 up from the grating. Fuel supply was 

started on the level of TC3 from 10 min. 

The oscillations reveal discharging and 

charging of solid. 

Fig. 3 presents preliminary results for gaseous products of 2-propanol conversion 

as dependent of air flowrate varied while propanol supply was maintained constant. 

Here x = [O2]/([C3H8O]*3) is oxygen to carbon molar ratio [1]. In the regime 

presented in Fig. 3 the conversion yields substantial concentrations of hydrocarbon 

gases. 
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EFFICIENT TWO-PHASE PROCESSES OF OXIDIZING SUBSTITUTED 
ALKYLPHENOLS INTO THE CORRESPONDING PARA-QUINONES  

IN THE PRESENCE OF HETEROPOLY ACID SOLUTIONS 

Yulia A. Rodikova, Elena G. Zhizhina, Leonid L. Gogin, Zinaida P. Pai 

Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, 630090 Novosibirsk, 
Russian Federation, zhizh@catalysis.ru 

Substituted alkyl-1,4-benzoquinones are valuable chemicals used, for example, in 

chemical organic and pharmaceutical synthesis, catalysis, and chemical physics, 

which nowadays are produced from the corresponding phenols by diverse oxidizing 

methods with moderate selectivity and efficiency [1]. Search for novel approaches to 

convert various phenols, such as 2,3- and 2,6-dimethylphenols (Me2Ps), as well as 

2,6-di-tert-butylphenol (2,6-tBuP), stays a popular task. The aim of the study was to 

develop an efficient method for oxidizing aforesaid phenols into valuable 

benzoquinones in the presence of modified P–Mo-V heteropoly acid solutions  

(P–Mo-V HPAs) that are good oxidants with the property of reversible oxidability. 

The modified-type P–Mo-V HPA solutions of HaPzMoyVxOb gross-composition 

with different vanadium content (x) were prepared in two stages by H2O2-based 

activation of V2O5 and subsequent addition of obtained H6V10O28 solution stabilized 

with H3PO4 into boiling aqueous suspension of MoO3 and H3PO4 [2]. The catalysts 

were characterized by 31P and 51V NMR spectroscopy, potentiometry, titrimetry, and 

pH measurements and tested in two-phase oxidation of 2,3- and 2,6-Me2Ps, as well 

2,6-tBuP at various reaction parameters. 31P and 51V NMR spectra showed that the 

obtained HPAs are complex mixtures of heteropoly anions Hx–1PMo12–xVxO40
4– (with 

different number of vanadium atoms x) surrounded by cations VO2
+ and H3O+ and 

anions HzPO4
(3–z)–. All solutions were found to be strong Brønsted acids with pH 

below 0 and possess oxidation potential values above 1 V. The content of 

vanadium(IV) obtained by potentiometric titration was less than 6% that is explained 

by the partial reduction of vanadium(V) with H2O2 to vanadium(IV) during synthesis. 

The synthesized P–Mo-V HPA solutions were tested as catalysts for two-phase 

oxidizing the above phenols into the corresponding benzoquinones, varying an 

organic solvent type and its volume, temperature (25-70 °C), atmosphere (N2, O2, 

CO2), and molar ratio of vanadium (V) to substrate (in the range of 4-21) (Eq. (1)).  
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SO2 OXIDATION IN STRUCTURED CATALYTIC CARTRIDGES WITH 
GLASS-FIBER CATALYST FOR CONDITIONING OF FLUE GASES 

FROM COAL-FIRED POWERPLANTS 

Andrey Zagoruiko1,2, Pavel Mikenin1, Sergey Lopatin1, Kseniya Golyashova1,2 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, zagor@catalysis.ru 

2Novosibirsk State University, Novosibirsk, Russia 

Abatement of ash particulates emissions into atmosphere with flue gases of coal-

fired powerplants is an important environmental protection problem. The ash particles 

are usually removed in electrostatic precipitators, but their efficiency may be 

decsreased by high electric resistivity of ash, produced in result of combustion of 

some types of coal. 

This problem may be resolved by application of flue gas conditioning 

technologies, based, in particular, on addition of amounts of SO3. Sulfur trioxide 

forms the microdroplets of sulfuric acid, which are adsorbed at the surface of ash 

particles thus decreasing their electric resistivity and improving the operation of 

precipitators. 

Application of pure SO3 as an external conditioning agent is not feasible due to 

problems with its tranporation, storage and injection into the flow of flue gases. 

Oxidation of sulfur trioxide present in the flue gases is much more attractive 

alternative. 

All existing catalysts are not suitable for this purpose. The very strong limitations 

of the pressure drop, very high fluid velocity and significant content of ash particles in 

the flue gases makes impossible to apply conventional granulated vanadia catalysts 

due to their very high pressure drop and high risk of clogging by particulates. These 

catalysts are not manufactured in a form of structured monoliths characterized with 

low hydraulic resistance and high permeability.  

The breakthrough in this area may be provided by application of glass-fiber 

catalysts (GFCs) [1]. It was demonstrated that such catalysts show high operation 

stability and lower ignition temperature, compared to conventional vanadia catalysts 

[2]. At the same time, such catalysts use zirconia-promoted glass-fiber supports, 

which are expensive and have limited availability at the open market.  
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In our current work we have proposed new type of Pt-based GFC which shows 

high activity and even more lower ignition temperature: ~250 °C compared to 300-

330 °C in case of previous GFC and 360-400 °C for vanadia catalysts (see Fig.1). 

 
Fig. 1. SO2 conversion vs temperature in oxidation of SO2.  

Conditions: inlet SO2 concentration – 200 ppm, GFC loading – 9 g, gas flow rate – 22 l/min 

This catalyst may be applied for oxidation sulfur dioxide in form of structured 

catalytic cartridges, which are characterized with excellent ratio between mass 

transfer efficiency and pressure drop [3]. These cartridges are also characterized 

with increased permeability, making possible to use them in a flow with high content 

of ash particles. 

The presentation also discusses the synthesis and experimental testing of 

vanadia-based GFCs, which may be considered as an alternative to Pt-containing 

catalyst within the given approach. 
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FUTURE DEVELOPMENT OF UPGRADING PROCESSES  
FOR HEAVY OIL FEEDSTOCKS 

Krivtsova K.B., Mityanina O.E. 

National Research Tomsk Polytechnic University, Tomsk, Russia, 
energo.lab.tomsk@mail.ru 

Nowadays, the development of new effective technologies for the extraction and 

processing of heavy hydrocarbon feedstocks, such as heavy and superheavy oils, 

natural bitumen, bitumen-saturated rocks and asphaltites, is actively researched [1-

3]. This fact is due to the steady decline in the share of light oil produced in the world 

and the annual increase in the number of heavy oils involved in processing. These 

types of feedstock have not been practically used in the petrochemical industry 

before. 

Heavy oil feedstocks are characterized by a high content of tar-asphaltene 

substances and heteroatom compounds. These features determine the main 

processing options. Having no scientific information on the composition of these 

components, it is impossible to solve the problems of using such non-standard 

feedstock in an effective way [4-6]. A very important aspect of this problem is the 

structural and mechanical properties of heavy oil feedstock, which also determine the 

way of oil extraction and processing. At the moment, the mechanism of interaction 

between resin and asphaltene molecules with reagents used to change the structural 

properties of heavy petroleum feedstocks has not been studied in practice, as well as 

the regularities of resin and asphaltene molecule transformation in various types of 

oil processing. 

Therefore, the urgent issue is the question of studying the transformation 

mechanisms of heavy oil high-molecular compounds while processing and interaction 

with reagents that improve the rheological, structural and mechanical properties of 

heavy oils, as well as the search for new, alternative methods of extraction and 

processing of heavy oil. 

One of the most promising methods in the field of heavy hydrocarbon feedstock 

processing is the conversion in a water vapor medium under critical and supercritical 

conditions. Water under supercritical conditions has the properties of a proton-donor 

nonpolar solvent, which in turn increases the efficiency of thermal destruction 
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processes and produces hydrocarbon mixtures with a low content of heteroatomic 

compounds [7]. 

Consequently, the main purpose of this work is to identify the principal directions 

of changing in resin and asphaltene structures of heavy oil in the process of 

aquathermolysis under various conditions, as well as the development of methods for 

regulating the rheological and structural-mechanical characteristics of heavy oils. 

The following tasks are planned: 

1. To consider the possibility of using aquathermolysis as one of the most 

promising processes for upgrading heavy oil feedstocks. 

2. To study the interaction process of resin and asphaltene molecules with 

reagents that improve the rheological and structural-mechanical properties of heavy 

oil feedstocks. 

3. To determine a transformation mechanism for the conversion of resin and 

asphaltene molecules when interacting with reagents that improve the rheological, 

structural and mechanical properties of heavy oil. 

The solution of these problems will enable not only to simplify heavy oil feedstock 

refining, transporting and processing without changing the configuration of oil 

refineries, but will also facilitate the extraction of heavy oils and natural bitumen. 
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MODELING OF ISOTHERMAL ADSORPTION 
OF SULPHANOL ON THE QUARTZ SAND 

Aliyev Q.S., Nagiyeva R.N. 

Institute of Catalysis and Inorganic Chemistry named after academician M. Nagiyev 
of National Academy of Sciences of Azerbaijan, Baku, Azerbaijan 

chemproblem@mail.ru 

Many of the tasks associated with the use of surfactants in the field of oil recovery 

remain unresolved. These include the management of the injection operation in the 

formation of a surfactant solution, which depends significantly on the complexity of 

the approach to process modeling. Adsorption of a surfactant in a porous medium 

leads to the fact that at the front of oil displacement, water does not contain 

surfactants or contains them in very small, inefficient concentrations. The front of the 

surfactant moves 10-20 times slower in the formation than the displacement front. 

The well placement system for the application of aqueous surfactant solutions can be 

the same as for conventional water flooding. 

The main objective of the study was to give an experimental and theoretical 

estimate of the effect of sulfonol adsorption on quartz sand. 

Discussion of the experimental results shows that the given process is 

characterized by a nonequilibrium dynamics of adsorption and can be described by a 

system of equations: the balance of sulfonol (1), the kinetics of its adsorption on 

quartz sand (2), the adsorption isotherm (3), the initial and boundary conditions (4). 

 
∁ υ ∁ 	 ‐ '

' Dэ
∁ 		,																																															 1  

	 C a/Г	 		,																																																											 2  

a f C 		,																																																																																										 3  

C 0, t C ; 		C ∞, t 0; 		C x, 0 0; 		a x, 0 0		.								 4  

 

Here ∁ – adsorption concentration, C  – initial concentration of adsorbent at the 

inlet of the adsorber, a – adsorbate concentration,  – linear velocity,  – time, 

 x – height coordinate of adsorbent bed, э – effective diffusion coefficient, 

 0 – coefficient of kinetics, Г – Henry's coefficient, 1 / ,  – porosity. 
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MATHEMATICAL MODELING OF PYROLYSIS IN TUBULAR 
REACTORS OF VARIOUS TYPES 

Bykov V.I., Tsybenova S.B., Lomakin S.M., Varfolomeev S.D. 

Emanuel Institute of Biochemical Physics RAS, Moscow, Russia, vibykov@mail.ru 

Pyrolysis of carbonaceous feedstock is an important essential part of the actual 

problem of recycling. Experiments show that the implementation of pyrolysis process 

in an oscillating temperature field leads to a noticeable increase of productivity of the 

pyrolysis equipment. 

Kinetic model of the process, corresponding to the set of consecutive-parallel 

reactions has been proposed [1]. It is shown that in a certain temperature the 

oscillating regimes allow to increase the efficiency of the pyrolysis process. On the 

kinetic stage of the technology design an important role of the branched chain 

reaction mechanisms of the pyrolysis has been revealed [2]. 

Macrokinetic model of pyrolysis is proposed. It allows to obtain qualitative and 

quantitative characteristics of transport processes during the implementation of the 

pyrolysis of carbonaceous feedstock in equipments of a tubular reactor type [3]. It is 

shown that the kinetic regime is retained in a tubular reactor with a radius of less than 

1.5-2 cm. 

The problem of optimal temperature control of the pyrolysis process in a plug-flow 

reactor is formulated and solved. It is shown that the optimal temperature regime of 

the pyrolysis reactor control with screw feed of carbonaceous feedstock significantly 

depends on character of the main stages of kinetic scheme of reactions [4]. 

Mathematical modeling of pyrolysis in a tubular reactors of a multichannel type,  a 

countercurrent and a variable cross-section was carried out [5–7]. For example, a 

thermokinetic model for consecutive-parallel scheme of transformations has the form 

of the material balance equations [6] 
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where ci are the dimensionless concentrations of the substances. The heat balance 

equation of the condensed phase is 
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Hj are the heats of reactions;  is the heat-transfer coefficient from the reactor wall 

to the biomass;  is the heat-transfer coefficient from the countercurrent gas flow to 

the feedstock being pyrolyzed; T and is the reactor wall temperature. The heat 

balance equation of the gas phase is 

),()()( *2

2
TTTTFTTv

t
T 



























  (3) 

where  is the thermal conductivity of the gas fed countercurrent to the moving 

biomass,  is the heat-transfer coefficient from the gas to the reactor wall, v  and is 

the gas velocity in the countercurrent flow. 

Calculations (1)–(3) show that the implementation of pyrolysis in a tubular 

reactor, in which the heating of porous carbonaceous feedstock occurs in the 

countercurrent flow of heated gas, can provide significant productivity of process. 

The proposed stages of modeling of pyrolytic processes allows to speak about 

the development of the theoretical foundations of designing of pyrolysis processes of 

carbonaceous feedstock, which is carried out in the regime of oscillating temperature 

fields. 

References 
[1] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2015, 462(4), 112-

114. 
[2] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2016, 471(2), 362-

364. 
[3] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2016, 467(1), 76-

78. 
[4] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2016, 470(2), 302-

306. 
[5] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2016, 470(2), 293-

296. 
[6] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2017, 475(2), 192-

195. 
[7] Bykov, V.I., Lomakin, S.M., Tsybenova, S.B., Varfolomeev, S.D. Dokl. Chem. 2017, 477(1), 254-

256. 

Acknowledgements 
This work was supported by the Russian Science Foundation (grant no. 16-03-00123A) (2016–2018). 



VP-3 

410 

INVESTIGATION OF THE CATALYTIC EFFICIENCY OF COBALT 
AND NICKEL PYROPHOSPHATES IN THE PROCESS  

OF DEHYDRATION OF METHYL LACTATE 

Chernyshev D.O., Dubrovsky V.S., Nechepurenko N.A., Varlamova E.V.*, 
Suchkov Y.P., Staroverov D.V. 

D. Mendeleyev University of Chemical Technology of Russia, Moscow, Russia, 
*e-mail: varlamova@yandex.ru 

Introduction 
The growing demand for acrylic acid (AA) and its derivatives are set the task of 

developing new efficient and environmentally friendly methods for producing acrylic 

acid and acrylates. One of the most promising and environmentally friendly direction 

of their synthesis is currently the dehydration of lactic acid and its esters derived from 

renewable feedstocks. The main problem for the implementation of this area is the 

lack of efficient catalyst systems. At presentthe best results are shown by salt 

catalysts, especially a catalytic system containing magnesium and barium 

pyrophosphates, structured by silicon dioxide. 

The purpose of this study is to study the activity and selectivity of catalytic 

systems containing cobalt and nickel pyrophosphates in ML dehydration reaction. 

The pyrophosphates of cobalt and nickel was added to catalytic system based on 

barium and magnesium pyrophosphates with silica, this catalytic system was studied 

in our previously [1]. The activity of following catalytic systems were investigated: 

Ba2P2O7/Mg2P2O7/Ni2P2O7/SiO2 (1/1/1/1 mol),Ba2P2O7/Mg2P2O7/Ni2P2O7 (1/1/1 mol),

Ba2P2O7/Mg2P2O7/Co2P2O7/SiO2 (1/1/1/1 mol),Ba2P2O7/Mg2P2O7/Co2P2O7(1/1/1 mol). 

Experimental part 
Investigation of the catalyst systems were carried out in a vertical tubular reactor 

with a fixed catalyst bed 10 ml volume at atmospheric pressure in a nitrogen stream, 

at temperatures ranging 350-390 °C and a contact time of 0.5 to 1 second, ML 

mixture was fed to the reactor with water in a weight ratio of input 20/80. 

Experiment duration was 4 hours, with an interval analysis of the reaction mixture 

in 1 hour. The product composition was determined using GC and HPLC. Activity of 

catalysts were evaluated for ML conversion (XML, wt. %) and the selectivity to AA 

(SАA, wt. %), which was determined by the amount of acrylic acid formed by the 

dehydration reaction. 
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After each experiment, the catalyst was regenerated by feeding air at 480 °C 

temperature for 40 min. During regeneration, all samples recovery their initial 

catalytic properties. 

Results 
The following table shows the best results achieved for each of the investigated 

catalyst systems. 

Among theinvestigated catalytic systems containing cobalt and nickel 

pyrophosphates, the most effective is the Ba2P2O7/Mg2P2O7/Co2P2O7.The ML 

conversion is equal to 87.5 % that very close to ML conversion over 

Ba2P2O7/Mg2P2O7/SiO2 (94.5 %), also AA selectivity is equal to 53.7 % a little bit 

higher that over Ba2P2O7/Mg2P2O7/SiO2 (51.1 %). 

Catalyst Contact 
time, s Temperature,°С XML, wt. % SАA, wt. % 

Ba2P2O7/Mg2P2O7/SiO2 

1 370 

94.5 50.8 
Ba2P2O7/Mg2P2O7/Ni2P2O7/SiO2 64,6 44,4 

Ba2P2O7/Mg2P2O7/Ni2P2O7 70,6 43,6 

Ba2P2O7/Mg2P2O7/Co2P2O7/SiO2 76,9 52,7 

Ba2P2O7/Mg2P2O7/Co2P2O7 87,5 53,7 

However, the catalytic system Ba2P2O7/Mg2P2O7/Co2P2O7is more stable: when it 

used for 4 hours, the ML conversion reduced by 5-7 %, whereas when using 

Ba2P2O7/Mg2P2O7/SiO2 – by 10-13 %. 

Conclusions 
The effect of addition of nickel and cobalt pyrophosphates to ML dehydration 

catalysts was studied. It established that the addition of cobalt pyrophosphate 

(Co2P2O7) leads to an increase in the stability of the catalyst without reducing its 

efficiency. 

References 
[1] D.O. Chernyshev, V.S. Dubrovsky, E.V. Varlamova, Y.P. Suchkov, D.V. Staroverov, Study of the 
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CATALYSIS OF TRANSFORMATION OF BIOETHANOL  
TO ACETALDEHYDE AND HYDROGEN 

Dossumov K.1, Yergaziyeva G.2, Tairabekova S.Zh.2,  
Churina D.H.1, Telbaeva M.M.2 

 
1al-Farabi Kazakh National University, Center of Physical and Chemical Methods of 

Research and Analysis, 95А, str. Karasay batyr, Almaty, 050012, Kazakhstan  
2The Institute of Combustion Problems, 172, str. Bogenbay batyr, Almaty, 050012, 

Kazakhstan, *Corresponding author: ergazieva_g@mail.ru  

Oil reserves – the main raw material for the synthesis of most valuable 
commodity products, are deemed exhausted by many analysts [1-3]. The most 
promising renewable raw material with practically unlimited reserves meeting modern 
ecological requirements is bioethanol. Using catalytic methods from bioethanol can 
be synthesized industrially significant chemical compounds such as acetaldehyde, 
hydrogen, etc. Acetaldehyde – one of the most important multi-tonnage products and 
it is on the first place among aldehydes as an intermediate product of organic 
synthesis for producing acetic acid, acetic anhydride, ethyl acetate, 2-ethylhexanol 
etc. [4]. H2 is used in low-tonnage, science-intensive industries: electronic, 
pharmaceutical, food, metallurgy, the synthesis of chemicals and in organic 
chemistry, petrochemistry, oil and gas processing [5]. H2 is one of the attractive 
universal energy carriers with high ecological purity, flexibility and efficiency of 
energy conversion with its participation. It ranks first among energy carriers by the 
heat of combustion. The purpose of this work is to develop and study the activity of 
oxide catalysts in the conversion of bioethanol to acetaldehyde and hydrogen and to 
determine the dependence of their efficiency on the physical-chemical 
characteristics. As the active phase, oxides of transition elements Cu, Cr and Zn 
deposited on -Al2O3 were studied. The choice of the active phase was justified by 
the fact that these oxides are active in a number of works in the conversion of 
ethanol. It is known [6] that for transition metal oxides a broader set of degrees of 
oxidation, acid-base and oxidation-reduction properties are characteristic. The 
catalysts CuO/-Al2O3, ZnO/-Al2O3, Cr2O3/-Al2O3, CuO-Cr2O3/-Al2O3 and CuO-

ZnO/-Al2O3 were prepared by impregnating the carrier on the moisture capacity. The 
activity of catalysts was tested on an automated flow-through catalytic unit (PCU-2). 
The reaction products were identified on the "CHROMOS GC-1000" instrument using 
the absolute calibration method. The catalysts were investigated in the temperature 
range of 150-350 °C and a space velocity of 0.5-1 h–1. The optimum temperature is 
300 °C, the space velocity W = 1 h–1. 
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MATHEMATICAL MODELING OF INTRAMOLECULAR 
TRANSFORMATIONS OF ORTHO-SUBSTITUTED  

AROMATIC NITROSO OXIDES 

Enikeeva Leniza1, Khursan Sergey2, Gubaydullin Irek1,3 
1Ufa State Petroleum Technological University, 1 Kosmonavtov St.,  

Ufa 450062, Russia, leniza.enikeeva@gmail.com 
2Ufa Institute of Chemistry RAS, 71 pr. Oktyabrya, Ufa 450054, Russia 

3Institute of Petrochemistry and Catalysis RAS, 141 pr. Oktyabrya,  
Ufa 450075, Russia 

This work is focused on study of ortho-substituted aromatic nitroso oxides. 

Nitroso oxides have unique properties due to the cis-trans isomerism phenomenon 

and one-and-a-half N-O bond order in the nitroso oxide fragment. The chemistry of 

nitroso oxides is discussed in reviews [1-5]. This paper considers the decay reaction 

of aromatic nitroso oxides. Considering the complexity of aromatic nitroso oxides, 

conformational transformations development of a new comprehensive approach 

using experimental and theoretical tools alongside with mathematical methods and 

informational technologies is particularly relevant. The main objective of the paper is 

to develop an algorithm for numerical modeling of aromatic ortho-substituted nitroso 

oxides decay process. Mathematical model for decay reactions of  

2,4-dimethoxyphenyl nitroso oxide is suggested. The kinetic modeling allowed us not 

only to get an agreement between quantum-chemical and experimental data, but 

also to estimate previously unknown rate constants including the constants for the 

recombination stages. An algorithm for calculating the effective constants of niroso 

oxide isomers consumption, based on quantum chemical data, is developed 

alongside with an algorithm for searching for optimal values of the formation 

enthalpies and free Gibbs energies. 

References 
[1] Chainikova E. M., Khursan S. L. and Safiullin R. L. 2014 In The Chemistry of Peroxides; Greer A. 

and Liebman J. F., Ed. 3 , p 357-420. 
[2] Gritsan N. P. and Pritchina E. A. 1992 The mechanism of photolysis of aromatic azides, Russian 

Chemical Reviews, 61(5), p 500. 
[3] Ishiguro K. and Sawaki Y. 2000 Structure and Reactivity of Amphoteric Oxygen Species, Bulletin 

of the Chemical Society of Japan, 73(3), p 535-552. 
[4] Sawwan N. and Greer A. 2007 Rather exotic types of cyclic peroxides: Heteroatom dioxiranes, 

Chemical Reviews, 107(7), p 3247-3285. 
[5] Chainikova E.M., Yusupova A.R., Khursan S.L., Teregulova A.N., Lobov A.N., Abdullin M.F., 

Enikeeva L.V., Gubaydullin I.M. and Safiullin R.L. 2017 Interplay of Conformational and Chemical 
Transformations of Ortho-Substituted Aromatic Nitroso Oxides: Experimental and Theoretical 
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THE STUDIED OF ALTERNATIVE METHOD FOR PRODUCTION OF 
ACRYLIC ACID BY DEHYDRATION OF BUTYL LACTATE 

Knyazev D.S., Chernyshev D.O., Dubrovsky V.S.,  
Varlamova E.V., Makarov M.G., Kozlovsky R.A. 

D. Mendeleev University of Chemical Technology of Russia, 
125047, Moscow, Russia, varlamova@yandex.ru 

The acrylic acid (AA) is an important chemical intermediate, the consumption and 

production of which is growing steadily. This push the academic community to 

research a new technologies for the production of AA from renewable raw materials. 

This direction is most interesting for countries that do not has extensive 

hydrocarbons reserves of has limited access to them (gas, oil, etc.). 

In view of this, the potential direction is the production of AA by the dehydration of 

not only lactic acid (LA). Currently produced by the microbiological method from raw 

materials, but also by the dehydration of LA esters in particular butyl lactate (BL), 

obtained directly from the enzymatic substance without stage of purification of LA, by 

esterification of ammonium lactate with n-butanol. 

Development of such a hybrid technology, including the production of butyl ester 

of lactic acid by fermentation of plant material and it’s further catalytic dehydration 

into acrylic acid. 

 
From the available scientific and technical literature on the dehydration of LA on 

zeolites [1] and dehydration of MLour previously studies over the phosphate catalysts 

[2], it follows that zeolites catalysts show high selectivity for the main products 

(AA/MA), but too quickly lose their catalytic activity. In turn, phosphate catalysts are 

much slower deactivate with average selectivity for the main products. The aim of 

this paper is to study the behavior of these two different catalytic systems using BL 

with n-butanol as initial mixture. 

Based on results achieved for dehydration of ML over mixed phosphates 

catalysts (pyrophosphates alkali-earth metals structured by silica gel), a sample: 

BaPP/MgPP/SiO2 (mole ration 1/1/1) was synthesized to study the dehydration of BL. 

In comparison was choose a zeolite of the NaY type. 
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The studies were in the vertical tube reactor with a fixed catalyst bed of 5 ml at 

atmospheric pressure in a nitrogen flow at 370-390 °C and a contact time is equal to 

1 sec. The BL was feed into reactor in a mixture with n-butanol a weight ratio of 

20/80. 

The composition of the products was determined by using GC, GC combined with 

mass spectroscopy and HPLC. In addition to AA, butyl acrylate (BA) also taken into 

account as the main product. The activity and selectivity of the catalysts were 

evaluated by the conversion of BL (XBL, %) and the selectivity of formation of 

AA (SАA, %) and BA (SBA, %) (table. 1). 

Time, min 
NaY BaPP/MgPP/SiO2 

Х(BL), % S(AA), % S(BA), % Х(BL), % S(AA), % S(BA), % 
60 90.9 43.5 4.2 53.5 19.3 11.4 

120 96.3 44.3 5.3 35.2 33.2 19.5 
180 57.5 42.6 6.9 30.9 34.5 19.1 
240 14.0 40.9 12.1 30.3 37.8 20.9 

The experiments showed that zeolite NaY rapidly deactivated in the course of 

experiments. The conversion of BL decreased from 91 % to 14 % in 4 hours. For the 

BaPP/MgPP/SiO2 phosphate catalyst, the BL conversion decrease from 54 % to 

30 % in 3 hours and then remain stable. 

The average total selectivity for the main products (AA and BA) on the NaY was 

49.5 % and on the phosphate catalyst 53.5 %. Thus, further studies of the 

dehydration reaction of BL in AA and BA need continued using phosphate catalysts. 

References 
[1] Peng Sun, Dinghua Yu, Zhenchen Tang, Heng Li, and He Huang, NaY Zeolites Catalyze 

Dehydration of Lactic Acid to Acrylic Acid: Studies on the Effects of Anions in Potassium Salts, 
Ind. Eng. Chem. Res. 2010, 49, 9082-9087. 

[2] D.O. Chernyshev, B.C. Dubrovsky, E.V. Varlamova, U.P. Suchkov, D.V. Staroverov. Investigation 
of mixed phosphate catalysts in the process of dehydration of methyl lactate to acrylic acid // XI 
Competition of Young Scientists' Projects (Within the framework of the International Exhibition of 
Chemical Industry and Science "Chemistry-2017", 23-26 October 2017): abstracts. – M.: Dmitry 
Mendeleev University of Chemical Technology of Russia, 2017. 180 p., P. 72-73. ISBN 978-5-
7237-1555-4, Moscow, 24 October, 2017. 
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RESEARCH OF DIESEL FUEL CLEANING  
ON THE ALUMINOSILICATE ADSORBENT 

Kozlovskiy R.A., Luganskiy A.I., Zolotareva M.S.,  
Suchanova M.A., Dyagileva A.I. 

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
rakozlovskiy@mail.ru 

With the tightening of environmental and operational requirements for diesel 

fuels, the load on hydrotreating processes has increased, due to the increase in 

hydrogen consumption and the search for new catalytic systems, which entails an 

increase in operating costs. In addition, diesel fractions of secondary origin 

containing a large amount of tar-asphaltene substances (TAS) are increasingly 

involved in processing. The use of processes based on the adsorption of TAS and 

sulfur compounds, will allow for hydrotreating in milder conditions, with obtaining 

products of required quality. The advantage of adsorption cleaning, in comparison 

with other methods, lies in its high efficiency, the possibility of carrying out the 

process under mild conditions, the simplicity of technology, and the safety of 

production [1,2]. 

Practical implementation of the process includes two stages: adsorption and 

regeneration of the spent adsorbent. The efficiency of the process is determined by 

the high capacity and selectivity of the adsorbent with respect to the TAS, as well as 

the completeness of recovery of its activity after regeneration. Based on the literature 

review for this work was selected aluminosilicate adsorbent brand AS-230Sh of two 

types: type "B" (fraction size 0.0-0.2 mm) and type "C" (fraction size 0.2-1.6 mm), 

which has the greatest adsorbability with respect to the TAS and capacity in 

comparison with other adsorbents [3,4]. For regeneration, no additional reagents are 

required, during use, the adsorbent is practically not consumed [5]. 

The first stage of the process – adsorption – is carried out in a column with a 

height of 900 mm and an inner diameter of 29 mm filled with an aluminosilicate 

sorbent. The process is carried out at a temperature of 20-25 °C and atmospheric 

pressure. After completion of the first stage, nitrogen is blown through the filled 

adsorbent for a while (nitrogen flow rate 1.4 l / min, column pressure 0.5 atm) to 

desorb the adsorbed substances. The complete regeneration of the adsorbent from 

tar-asphaltene substances was carried out in an oven at 500 °C for 15-20 hours. 
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PREDICTIONS OF CHEMICAL REACTIVITY BY THEORETICAL 
CALCULATIONS 

Kukueva Vitalina 

State Institution “Institute of environmental geochemistry” 
03680, Kiev-142, Av. Palladin Academik, 34а. vitalina.kukueva@gmail.com 

What determines the catalytic activity for a given chemical reaction? For reactions 

with more than one possible product the presence of a surface can change the 

catalytic selectivity [1]. The quantum-chemical calculation has been provided to 

illustrate the possibilities of theoretical interpretation and prediction of catalytic 

reaction pathway. 

In this paper, the theory of the transition state is used for a detailed study of the 

kinetics of one of the most important reaction stages in the inhibition of a hydrogen 

flame by phosphorus-containing substances. There remain open questions about 

way of the suppression of fire: a molecule of a combustion inhibitor substance, or the 

destruction products. An analysis of the sensitivity of the rate constants of reactions 

containing organophosphorus components has shown [2] that the rate of free flame 

propagation depends most strongly on the rate constants of reactions: 

РО2
• + Н• + М  →  НОPO• + М  (1), 

НОРО + Н  →  Н2 + PO2   (2), 

РО + О  →  ОН + PO2    (3), 

entering into the catalytic recombination cycle [1]. In this case, reactions (1) and (2) 

are most effective. Quantum-chemical methods that are used in this paper to clarify 

the mechanism of one of the most important stages (2) in the cycle of hydrogen 

flame inhibition by phosphorus-containing substances. Thermodynamic 

characteristics of molecules are an important element of many chemical studies and 

are used in the development of technologies for the industrial synthesis of new 

materials, processes for processing oil and solid fuels, modeling and solving 

environmental problems. In this work, we calculated the thermodynamic 

characteristics of elementary reactions according to the Twarowsky mechanism [1], 

which proposed an inhibitory cycle involving small phosphorus-containing radicals. 

For the first time in this work, the inhibitory cycle of phosphorus containing 

substances is supplemented by one more reaction PO• + O••→PO2
•, as a result of 

which both atomic oxygen captured and the regenerated of the most important 
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inhibiting particle PO2
• occur simultaneously. In Table 1 shows the calculated 

thermodynamic characteristics of elementary reactions in the Twarowsky cycle. 
Table 1. Gibbs energies of elementary stages of transformation of particles PO• and PO2• at 

the flame suppression 

№ Stages of inhibition cycle 
Gibbs energies ∆G, kcal/mole at the temperature, Т, К 

298 500 700 900 1100 1300 1500 1700 1900 

1 PO• + O••→PO2• 7,5 12,3 17,1 21,8 26,6 31,6 36,3 41,1 46,4 

2 PO•+•OH→HOPO -10,9 -16,9 -22,7 -28,4 -34,1 -39,8 -45,3 -50,9 -56,4 

3 PO• + •H→ HPO -9,0 -13,3 -17,7 -22,3 -26,9 -31,7 -36,3 -41,0 -45,8 

4 PO2• +•OH → HOPO2 -13,4 -20,5 -27,3 -34,3 -40,7 -47,3 -53,8 -60,3 -66,6 

5 PO2• + H•→HOPO -13,1 -18,2 -23,5 -27,9 -34,3 -39,7 -45,2 -50,7 -56,1 

6 HOPO+H•→PO2•+H2 -1,9 -2,6 -3,3 -3,9 -4,4 -4,8 -5,3 -5,6 -5,7 

7 HOPO+OH•→PO2•+H2O -2,7 -0,9 -1,5 -2,0 -2,9 -2,8 -3,3 -3,5 -3,8 

Thus, for the first time in the work, the transition state of one of the leading 

elementary reactions in the cycle of hydrogen flame inhibition by phosphorus 

containing substances was calculated. The predominant role of small phosphorus-

containing radicals in suppressing the flame by organic phosphates has been proved. 

The new reaction stage has been added to the well known inhibition cyrcle. 

References 
[1] Twarowski A. The Temperature Dependence of H + OH Recombination in Phosphorus Oxide 

Containing Post-Combustion Gases, Combust. Flame, 1996, 105, 407-413.  
[2] Bolshova Т.А., Korobeinichev О.P., Promotion and inhibition hydrogen-oxygen falme by the 

thrimethylphosphate admixture, Physik of combustion and explosion 2006, 42, № 5, 3-13. 
[3] Twarowski A. Reduction of a Phosphorus Oxide and Acid Reaction Set, Combustion and flame, 

1995, 102, 41-54. 
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PRODUCTION OF PLASTICIZERS BASED ON SUCCINIC ACID AND 
2-ETHYLHEXANOL AND CYCLOHEXANOL 

Menshchikova A.A., Varlamova E.V., Filatova E.V., Suchkov Yu.P. 

D. Mendeleev University of Chemical Technology of Russia, 
125047, Moscow, Russia, anna.menshhikova.94@mail.ru 

Today most of the manufactured worldwide plasticizers are esters of phthalic 

acids. Researches of their physicochemical and consumer properties have shown 

that they are easily released from polymer compositions and are pollutants on a 

global scale [1]. 

Therefore an important problem is development of the ways of receiving 

phthalate-free plasticizers, which will have good plasticizing properties, high speed of 

biological degradation and hypotoxicity of products of their decomposition. According 

to the literature data, it is known that succinic acid esters (succinates) can be used as 

such plasticizers for PVC, which, in terms of their bacterial biodegradation, 

significantly exceed phthalates. [2] 

To study the plasticizing ability of succinates, samples of dicyclohexylsuccinate 

(DCHS) and di-2-ethylhexyl succinate (DEHS) were obtained. The tests of the 

obtained individual samples of succinates and comparison of their properties with the 

properties of dioctyl phthalate (DOP) showed that none of them in pure form is 

suitable for use as a plasticizer. 

To obtain a sample, that meets the requirements for plasticizers, several 

compositions were prepared, which are a mixture of DCHS and DEHS in different 

proportions, and their plasticizing properties were studied. It turned out that the 

blended sample with a ratio of DCHS to DEHS as 0.68 : 1 (mole/mole) has 

properties, which close to DOP. 

Another way for the preparation of plasticizer can be by direct synthesis by 

reacting of dimethyl ester of succinic acid with a mixture of cyclohexanol and  

2-ethylhexanol of various compositions. In this case, besides individual DCHS and 

DEHS, obtained plasticizer sample will contain an unsymmetrical ester cyclohexyl-2-

ethylhexylsuccinate (CHEHS). 
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Alcoholysis of dimethyl succinate with a mixture of alcohols of cyclohexanol and 

2-ethylhexanol at different ratios, catalyzed by the sodium hydroxide, was carried out 

with distillation of the concomitant methanol. The process was carried out under 

vacuum until the methanol evolution ceased, and the final product was purified from 

excess alcohols by distillation with steam, and from the intermediate products 

(methylcyclohexyl succinate and methyl 2-ethylhexylsuccinate) by vacuum 

rectification. The reaction mixture was analyzed by gas chromatography. 

The obtained samples of plasticizers were a mixture of unsymmetrical CHEHS 

and symmetric DCHSs and DEHSs in different ratios. The distribution of the reaction 

products as a function of the molar ratio of alcohols was investigated. The distribution 

coefficients for DCHS, CHEHS and DEHS for the range of ratio cyclohexanol/ 

2-ethylhexanol (1.1-1.5  1 mol/mol) were calculated (Table 1). 
Table 1. Properties of unsymmetric succinic acid esters 

Name of index CHEHS 
Samples 1 

CHEHS 
Samples 2 

CHEHS 
Samples 3 

The initial ratio of cyclohexanol to 2-ethylhexanol, mole 1.1:1 1.3:1 1.5:1 
The ratio of the alkyl groups C6 / C8 in the sample 0.53:1 0.69:1 0.9:1 

The tests of the obtained samples on their plasticizing properties have shown the 

possibility of using a mixture sample and sample No. 2 as a plasticizer on a par with 

DOP. 

References 
[1] Stuart A., McCallum M. M., Fan D. Poly(vinyl chloride) plasticized with succinate esters: synthesis 

and characterization//Polym. Bull. 2010. № 65, с. 589-598. 
[2] Delhomme Clara Process Integration of Fermentation and Catalysis for the Production of Succinic 

Acid Derivatives, Dissertation - Technische Universität München Lehrstuhlfür 
Bioverfahrenstechnik, 2011. с. 12. 
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XYLENES OXIDATION IN THE PRESENCE OF TRANSITION  
METALS SALTS MIXTURE 

Shulyaka S.E., Sinitsin S.A., Bukharkina T.V. 

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
E-mail: ofrolovik@rambler.ru 

Oxidation of individual ortho- and para-xylenes in the presence of transition metal 

salts has been studied for a long time. We believe the process mechanism looks like 

the following: peroxide radicals first involve hydrocarbons into chain oxidation 

process, then the same radicals are responsible for quaternary breakage of those 

hydrocarbons. In the case, metal proves to act as the initiator of intermediate 

peroxides or similar products decomposition, with further radicals release into the 

reaction space [1]. This technology is much appreciated within industrial processed, 

dedicated to production of aromatic acids from corresponding pure xylenes. Initial 

substances are separated by means of rectification, because the products of oil 

fractions reforming contain an isomer mixture of those substances [2]. 

This investigation is aimed on isomer mixture oxidation, without their separation, 

to obtain a mixture of o- and p-toluic acids. The oxidation rates of ortho-xylene and 

para-xylene without solvent over cobalt catalyst are comparable. We can expect 

those oxidation rates are kept within a mixture, or they may take closer or similar 

values, because any of original hydrocarbons may be involved to chain by both 

radicals, each with its own chain propagation rate constant. However, setting up the 

experiment with an equimolar mixture of xylenes resulted in dramatic oxidation rate 

decrease of para-xylene in the presence of ortho-isomer. The same speed ratio kept 

in the presence of a manganese-promoted cobalt catalyst. 

The inhibitory effect of ortho-xylene in the oxidation of para-isomer can be 

explained by the fact that probably hydroperoxide radical o-xylene, o-ROO● is more 

stable than an equivalent p-ROO●, and the latter is more active. Then, ROO● is 

capable of attracting only less oxidation-resistant o-xylene and incapable of 

interacting with p-xylene. Active ROO● radicals react with both hydrocarbons. In this 

case, the concentration of ROO● in the reaction mass will increase, resulting in 

formation of o-toluic acid, and suppressing the oxidation of p-xylene. Thus, o-xylene 

acts as a gradually expended inhibitor of the reaction. Meanwhile, kinetic curves of 
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the para-isomer oxidation show it’s accelerated comsumption at high conversion 

rates of o-xylene. 

Varying concentrations of the initial substances within the mixture makes it 

possible to estimate the relative activity of para-ROO● and ortho-ROO● radicals. The 

changes are observed, according to chain propagation rate constants. The observed 

phenomenon may prove valuable, because it first allows to oxidize ortho-isomer, then 

to separate o-toluic acid by means of filtering, and then to oxidize the remaining p-

xylene to p-toluic and terephthalic acids. 

References 
[1] Bukharkina T.V., Verzhichinskaya S.V., Digurov N.G., Shulyaka S.E. Liquid-phase air oxi-dation 

of p-xylene in transient metals presence // Chemical Industry Today, 2013, №6, P. 32-39. 
[2] Shulyaka S.Е. Modern application aspects of industrial gasoline fraction // Oil and Gas Tech-

nology. 2014. V. 92 № 3, P. 25-28. 
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SYNTHESIS AND EXTRUSION MOLDING OF Fe-Mo CATALYST  
FOR OXIDATIVE DEHYDROGENATION OF METHANOL  

TO FORMALDEHYDE 

Polovinkin M.A.1, Kostiuchenko V.V.1, Gavrilov Yu.V.1, Sinitsin S.A.1,  
Danilov E.A.2, Cheblakova E.G.2, Vodoleyev V.V.3 

1D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
E-mail: sergeysinit@rambler.ru 

2JSC “State Research Institute for Graphite-Based Structural Materials”,  
Moscow, Russia 

3JSC “Tehmetall-2002”, Kirovgrad, Russia 

Modern industrial technology of Fe-Mo catalyst for oxidative dehydration of 

methanol includes deposition of iron (III) molibdate from aqueous solutions of 

ammonia molibdate and iron (III) nitrate, rinsing, drying, and pelletization of grains (or 

ring-shaped tablets) [1]. The principal disadvantages of the said technology are 

abundance of waste water, as well as non-optimal pore structure of the catalyst 

(including low mesopore content). The present study reports low-waste “dry” and 

“combined” technologies for catalyst preparation; extrusion molding as an alternative 

to pelletization was also assessed. 

“Dry” technology includes oxidative sintering of ammonia molibdate and iron (III) 

oxide requires extensive heating along with periodic stirring of the mixture. 

Introduction of organic acids, i.e. citric, into the mixture, allows for obtaining sintered 

(550 °C) product containing no free iron (III) oxide (as per XRD data). In our 

prospective, “combined” technology seems very promising. It is based on combustion 

of concentrated solutions of ammonia molibdate and iron (III) oxide at 500-550 °C in 

the presence of complexing agents such as tartaric or citric acid, which allows a one-

step synthesis of Fe2(MoO4)3 and MoO3 mixture with desired phase ratio (as 

demonstrated via XRD) at quantitative yield. 

Improving heat- and mass-transfer along with decreasing of pressure drop of 

catalytic layers in cylindrical reactors requires the use of special “energy-effective” 

catalytic particles (size under 5 mm) with increased outer surface, i.e. grooved 

cylindrical granules. We used extrusion molding of water-bonded pastes with 

appropriate additives. Obtained granules (see fig. 1) had far better mechanical 

strength as compared to industrial pellets which might significantly increase catalytic 

layer lifetime. 
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INFLUENCE OF PALLADIUM CONTENT ON THE ACTIVITY AND 
STABILITY OF THE CATALYST OF THE BENZYL ALCOHOL 

AQUEOUS ALKALINE OXIDATION 

Staroverov D.V., Zudilin D.M., Efimov I.V., Makarov M.G. 

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
stardv@muctr.ru 

Benzyl alcohol is widely used as one of the model substrates for investigation of 

liquid-phase oxidation (oxidative dehydrogenation) of alcohols over platinum-group 

and gold catalysts. 

The kinetics of aqueous-alkaline oxidation of benzyl alcohol with oxygen  

 
in the presence of 0.5 % palladium-on-carbon was studied by a volumetric method. 

The alcohol concentration did not exceed the limits of its solubility in the aqueous 

phase. The hydrodynamicы ensured the absence of limiting difficulties for mass 

transfer at the gas/liquid and liquid/solid boundaries and in the bulk liquid phase. The 

degree of dispersion of the catalyst ensured the absence of internal diffusion 

resistance. 

In each test conversion was low enough to provide ‘isolation’ conditions for liquid 

phase reagents. The reaction order with respect to these reagents (alcohol and 

alkali) were determined from the relationship of the initial reaction rate vs varying 

initial concentrations: zero order in alkali and first order in alcohol. 

It is experimentally shown that there is no effect of sodium benzoate on the 

reaction rate in the range studied. Nevertheless, during each experiment, a 

significant decrease in the rate of oxidation was observed (Fig. 1, typical kinetic 

curves, a catalysts series). 

It was concluded this result is due to catalyst deactivation with oxygen, known as 

‘over-oxidation’. A mathematical model is proposed that adequately describes the 

results obtained: 

dC*(O2)/d = kACBzOHCcat,  –dA/d = kDA, 

where C*(O2) = N(O2) is effective absorbed oxygen concentration; CBzOH and Ccat 

are benzyl alcohol and catalyst concentrations;  is reaction time; A is current relative 

catalyst activity (A0 = 1).  



VP-12 

428 

 
Fig. 1. 

Oxidation (k) and deactivation (kD) constants are quasi, since the model does not 

take into account the effect of oxygen concentration. 

Using the technique and the mathematical model described above, the 

relationship of the catalyst activity and resistance to deactivation with palladium 

content was studied. It was found that palladium content increasing from 0.25 to 2 % 

causes a moderate monotonic growth of initial catalyst activity. At the same time, a 

sharp, almost step-like, drop of the deactivation rate, i.e., an increasing of the 

catalyst stability, is occured in the region between 0.25 and 0.5 % palladium content 

(Fig. 2). 
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MODIFIED FATTY ACID METHYL ESTERS DISTILLATION BOTTOMS 
AS A NOVEL STABILIZER FOR POLYMER COMPOSITIONS 

Zhila M.Yu., Sapunov V.N., Voronov M.S., Shpakova P.I., Gladysheva A.A. 

D. Mendeleev University of Chemical Technology of Russia,  
125047, Moscow, Russia, margo.yu@gmail.com 

Nowadays, due to the growth of world production of the biodiesel, there is a 

problem of waste conversion, which don't find adequate market outlet in raw 

condition. So, during the purification of fatty acid methyl esters (FAME) distillation 

bottoms remain, which basically contain of unreacted vegetable oil. Vegetable oils 

are products consisting of triglycerides of fatty acids. In turn, derivatives of vegetable 

oils have found application in many industrial areas [1]. 

Epoxidized vegetable oils and their derivatives have the greatest industrial 

interest, since they possess high reactivity and they are universal intermediates for 

the production of various materials widely used in everyday life (lubricants, epoxy 

and alkyd resins, etc.) [2]. 

In present work, the raw material for the epoxidation reaction was the distillation 

bottoms of FAME from vacuum distillation stage. O-xylene was used as a solvent, 

since the distillation bottoms represent materials of viscous consistency. 37 % 

hydrogen peroxide and 85 % formic acid (both obtained from «Labtech») were used 

to prepare the epoxidizing agent. 

Epoxidation procedure was carried out in a round bottom three necked flask of 

150 mL capacity, placed in thermostated oil bath, equipped with a thermometer, 

reflux condenser and overhead stirrer (500-600 rpm). The reaction was carried out in 

molar ratio of [HCOOH]: [Double bonds] = 1.5: 1; [H2O2]: [Double bonds] = 1: 1. The 

mixture was heated to the reaction temperature (40 °С). Then, the calculated amount 

of 37 % hydrogen peroxide was added drop-wise for 20 min. Upon completion of the 

epoxidation prior to analysis the epoxidated bottoms were washed repeatedly with 

distilled water until they were acid free (water extraction). Finally rotary evaporator 

was used to remove solvent and trace water. The obtained samples were analyzed 

for oxirane content and iodine value. 

In the course of the experiments, it was found that in order to achieve maximum 

yield, it is necessary to carry out the process in several stages. After five stages of 

the reaction the yield of epoxides was 87 %. 
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Also, tests of the epoxidized bottoms as the viscosity stabilizer for PVC paste 

were carried out (Table 1). The viscosity of the resulting mixture was measured on a 

Viscometer BROOKFIELD DV-II + Pro. 
Table 1. Determination of the viscosity of the composition 

Measuring time 

Paste 1 (without epoxidized product) Paste 2 (with epoxidized product) 

t, °С 
Viscosity, cP 

t, °С 
Viscosity, cP 

10, 
sec–1 

20, 
sec–1 

50, 
sec–1 

100, 
sec–1

10, 
sec–1 

20, 
sec–1 

50, 
sec–1 

100, 
sec–1 

Initial 24,2 3479 3419 2879 2807 25,1 3959 3539 3143 3011 

In 2 h 23,5 4199 3899 3719 3575 23,8 4079 3599 3359 3263 

In 24 h 22,4 4919 4559 4391 4271 23,0 4679 4079 3935 3875 

In 48 h 21,8 5759 5159 4871 4727 22,4 5039 4559 4103 3879 

In 72 h 20,7 6239 5579 5303 5111 20,8 5039 4799 4511 4379 

It turned out that the sample with the epoxidized distillation bottoms introduced 

into the composition gave the PVC paste viscosity stability in time. So, epoxidized 

FAME distillation bottoms may be used as alternative, cheep and environmentally 

friendly stabilizers. 

References 
[1] Michael A.R. Meier, Jurgen O. Metzger, Ulrich S. Schubert // Chem. Soc. Rev., 2007, 36, 1788-

1802. 
[2] V.B. Borugadda, V.V Goud. // Energy Procedia, 2014, 54, 75-84. 



VP-14 

431 

ELECTROMAGNETIC INSTALLATION FOR NEUTRALIZATION  
OF WASTEWATER PRODUCTION OF OLIVE OILS 

Bachurikhin A.L.1, Efendiev M.S.2 
1I.M. Gubkin Russian State University of Oil and Gas, Russia, Moscow 119296,  

the Leninscky av., 65, E-mail: mesckalin@yandex.ru 
2OJSC DagNefteProduct, Russia, Makhachkala City 367009,  

the av. Aeroport street, 1 

The majority of known processes of clearing of water environments from oil 

pollution is based on use the methods of oxidation, flotation, absorbtion, and also 

methods of biological clearing. Under the total characteristics, including productivity, 

a degree of clearing, simplicity of technological decisions, the economic and power 

efficiency, the mentioned ways are conditionally suitable for the decision of similar 

problems. 
The clearing process of water environments from oil pollution and dangerous 

hydrocarbons aromatic and olefinic the lines, based on use is developed and tested 

in industrial scale as basic reactionary unit of the device of electromagnetic 

processing water environments. The principle of work is based on the phenomenon 

of acceleration microparticles association of mineral oil in conditions of interaction of 

an external variable magnetic field with ferromagnetic sorbent which particles have 

own constant magnetic field.  

Working parameters of a reactor electromagnetic association: 

Initial concentration of mineral oil  — 100  1 mg/L 

Final concentration of mineral oil  — 0,5  0,05 mg/L 

Productivity on initial water   — Up to 100 m3/h 
Operating mode    — Continuous 

Working temperature    — 0  50 °С 

Working pressure    — 0  1,0 MPa 

Besides direct use of the specified installation during water treating, there are 

variants of her modification, allowing her use in a number of adjacent tasks of oil 

extracting and processing. In particular, her use is planned during preliminary 

processing, tars, bitumen sand, in manufacture of dyes, etc. spheres.  

The general distinctive characteristics of installation: 

1) High efficiency; 
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2) Stability to a high level of pollution of communications (a rust, sand); 
3) Standartization of a design with an opportunity of fast replacement of 

elements (a grid, a pipe, nozzles and so forth); 
4) Absence of a problem of deterioration in case of use the plastic reactor. 
Installation has passed industrial tests in a zone: 1) Caspian pool: Russia, 

Republic Dagestan, 2006-2010; 2) Germany, Wesendorf and Hanover in 2015;  

3) Greece, the Coast of the Ionian sea (Ligya) and the island of Corfu, 2015. 

 

Pilot Plant – Photo 
Greece, the Coast of the Ionian sea (Ligya) and the island of Corfu, 2015 
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Professor Sergei Reshetnikov  Boreskov Institute of Catalysis SB RAS, Russia 


Professor Marie‐Françoise Reyniers  Ghent University, Belgium 


Professor Maarten Sabbe  Ghent University, Belgium 


Professor Mark Saeys  Ghent University, Belgium 


Dr. Pavel Snytnikov  Boreskov Institute of Catalysis SB RAS, Russia 


Dr. Paul Van Steenberge  Ghent University, Belgium 


Professor Christian Stevens  Ghent University, Belgium 


Professor Joris Thybaut  Ghent University, Belgium 


Dr. Alexey Vedyagin  Boreskov Institute of Catalysis SB RAS, Russia 


Dr. Nadezhda Vernikovskaya  Boreskov Institute of Catalysis SB RAS, Russia 


Professor Grigorii Yablonsky  Washington University in St. Louis, St. Louis, MO, 
USA


Professor Vadim Yakovlev  Boreskov Institute of Catalysis SB RAS, Russia 


Mr. Ilya Zolotarskii  Boreskov Institute of Catalysis SB RAS, Russia 
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LOCAL ORGANIZING COMMITTEE 


Professor Denis Constales  Ghent University, Belgium 


Professor Gregory Yablonsky  Washington University in St. Louis, St. Louis, MO, USA 


Professor Joris Thybaut  Ghent University, Belgium 


Professor Mark Saeys  Ghent University, Belgium 


Professor Geraldine Heynderickx  Ghent University, Belgium 


Dr. Vladimir Galvita  Ghent University, Belgium 


Professor Marie‐Françoise Reyniers  Ghent University, Belgium 


Dr. Frederik Ronsse  Ghent University, Belgium 


Professor Maarten Sabbe  Ghent University, Belgium 


Dr. Paul Van Steenberge  Ghent University, Belgium 


Professor Dr. Ir. Wolter Prins 
Ghent University, Belgium 
BTG Biomass Technology Group bv, Enschede,  
The Netherlands
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SCIENTIFIC TRENDS 


Advances in Chemical Reactor Fundamentals  


Chemical Reaction Kinetics 


Energy & Mass Transfer in Chemical Reactors and first principles calculations 


Fundamentals of Hydrodynamics and Fluid Flow in Chemical Reactors 


Chemical Reaction Engineering and Reactor Design – Novel Experimental Approaches, 


Modeling, Scale‐Up and Optimization 


Mathematical Simulation: Multiscale Analytic and Computational Studies of Chemical 
Reactors  


Development of Chemical Reactors and Flow‐Sheeting of Reactive Processes 


New Chemical Reactor Designs (e.g., Structured Reactors, Membrane Reactors, 
Microreactors) 


Process  Intensification  and  Novel  Approaches  in  Multifunctional  Reaction  Processes  


(e.g., Microwave/Induction Heated Reactors, Ultrasonic Reactors, Unsteady‐State Forcing 


and  Sorption  Enhancement  in  Chemical  Reactors,  Multifunctional  Reactors,  Nature‐


Inspired Engineering of Reaction Processes, High‐gravity, High‐Shear Reactors) 


Chemical Reactors and Technologies for Targeted Applications  


Environmental Protection and Utilization of Waste  


Reactors for Polymers and Other Novel Materials with Targeted Properties   


Processing of Biomass and Renewable Feedstocks 


Electrochemical and Photochemical Reaction Engineering  


Biochemical Engineering 


CO2 Sequestration and Utilisation 


Advanced Processing of Conventional and Unconventional Hydrocarbon Feedstocks 


Modern Reactive Technologies for Natural Gas, Oil and Coal Processing 


Chemical Processes for Intensification of Fuel Production  


Chemical Reactors for In Situ Processing of Oil and Coal in Deposits 


Chemical Reactors and Processes for Treatment of Heavy Hydrocarbon Feedstock and 
Shale Oil 
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November 5, Monday 


Morning Session 
REFTER Hall 


08.45 Conference opening 


PLENARY LECTURES 


Chairpersons:  
Professor Guy Marin, Belgium 
Professor Mario Montes, Spain 


09.00 
PL‐1 
Professor Jens Kehlet Nørskov 
Technical University of Denmark, Lyngby, Denmark 
A Professor Mikhail Slin’ko Honorary Lecture 
CATALYSIS FOR SUSTAINABLE PRODUCTION OF FUELS AND CHEMICALS 


10.00 
PL‐2 
Professor Vemuri Balakotaiah1, Zhe Sun1, David H. West2 
1University of Houston, USA 
2SABIC Technology Center, Surgarland, TX, USA 
AUTOTHERMAL REACTOR DESIGN FOR CATALYTIC PARTIAL OXIDATIONS 


11.00 Coffee‐break 


KEYNOTE LECTURES 


Chairperson: Professor Carlos Castillo‐Araiza, Mexico 


11.30 
KL‐1 
Professor Manos Mavrikakis 
University of Wisconsin, Madison, Wisconsin, USA 
PREDICTION OF REACTION RATES FOR IMPROVED CATALYST DESIGN AT THE ATOMIC SCALE 


12.00 
KL‐2 
Professor José Carlos Brito Lopes 
University of Porto, Portugal 
The NETmix REACTOR: CONCEPTS, TECHNOLOGY AND PRODUCTS 


12.30 Lunch 
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Afternoon Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section I.  
ADVANCES IN CHEMICAL REACTOR FUNDAMENTALS 


Chairperson: Professor Evgeny Rebrov, United Kingdom 


14.00 
OP‐I‐1 
Peng B.1,2, Yablonsky G.3, Constales D.4, Marin G.4, Muhler M.1,2 
TESTING THE INVARIANT FOR THE NON‐LINEAR CHEMICAL REACTION 
1Ruhr‐University Bochum, Bochum, Germany 
2Max Planck Institute for Chemical Energy Conversion, Mulheim an der Ruhr, Germany 
3Washington University in St. Louis, St. Louis, MO, USA 
4Ghent University, Ghent, Belgium 


14.20 
OP‐I‐2 
Quaglio M., Waldron C., Pankajakshan A., Gavriilidis A., Galvanin F. 
A MODEL‐BASED DATA MINING APPROACH FOR OUTLIER DETECTION IN KINETIC MODELLING 
STUDIES 
Chemical Engineering Department, University College London, London, United Kingdom 


14.40 
OP‐I‐3 
Till Z., Varga T., Chován T. 
REDUCTION OF LUMPED REACTION NETWORKS BASED ON GLOBAL SENSITIVITY ANALYSIS 
University of Pannonia, Veszprém, Hungary 


15.00 
OP‐I‐4 
Slinko M.M.1, Makeev A.G.2, Luss D.3 
MECHANISM OF CO OXIDATION OVER Pt‐GROUP METALS UNDER HIGH PRESSURE 
CONDITIONS: Langmuir–Hinshelwood or Mars–van Krevelen? 
1Semenov Institute of Chemical Physics RAS, Moscow, Russia 
2Lomonosov Moscow State University, Moscow, Russia 
3University of Houston, USA 


15.20 
OP‐I‐5 
Yablonsky G.1, Stokie D. 1, Kumfer B. 1, Verma P.1, Min Y.1, Zhu Y.1, Jun Y.1, Suresh A.2, Axelbaum R.2 
THE KINETICS OF FLUE GAS PURIFICATION FOR PRESSURIZED OXY‐COMBUSTION 
1Washington University in St. Louis, St. Louis, MO, USA 
2Indian Institute of Technology Bombay, Mumbai, India 


15.40 Coffee‐break 
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Afternoon Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section I. 
ADVANCES IN CHEMICAL REACTOR FUNDAMENTALS 


Chairperson: Professor Joris Thybaut, Belgium 


16.00 
OP‐I‐6 
Kolb G.1,2, Ortega C.2, Hessel V.2 
DIMETHYL ETHER CONVERSION TO GASOLINE GRADE HYDROCARBONS OVER ZSM‐5: KINETIC 
STUDY IN A RECYCLE REACTOR 
1Fraunhofer IMM (Fraunhofer Institute for Microtechnology and Microsystems), Mainz, Germany 
2Eindhoven University of Technology, Eindhoven, The Netherlands 


16.20 
OP‐I‐7 
Standl S.1, Kühlewind T.1, Kirchberger F.M.1, Tonigold M.2, Lercher J.A.1, Hinrichsen O.1 
METHANOL‐TO‐OLEFINS (MTO) on ZSM‐5: SINGLE‐EVENT KINETIC MODELING, MECHANISTIC 
ANALYSIS AND REACTOR DESIGN 
1Technical University of Munich, Munich, Germany 
2Clariant Produkte (Deutschland) GmbH, Bruckmühl, Germany 


16.40 
OP‐I‐8 
Petrov R.1, Nazimov D.1, Klimov O.1, Noskov A.1, Parakhin O.2 
KINETIC MODEL FOR n‐BUTANE TO BUTADIENE DEHYDROGENATION ON Cr‐Al CATALYST 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2LLC «SPAC «Sintez», Barnaul, Russia 


17.00 
OP‐I‐9 
Alvarado Camacho C.1, Thybaut J.2, Ruiz Martinez R.1, Morales A.1, Castillo‐Araiza C.O.1 
KINETIC ASSESSMENT OF THE OXATIVE DEHYDROGENATION OF ETHANE USING a NiSnO 
CATALYSTS 
1Autonomous Metropolitan University‐Iztapalapa, Iztapalapa, Mexico 
2Ghent University, Ghent, Belgium 


17.20 
OP‐I‐10 
Chizhik S.A.1,2, Popov M.P.1, Nemudry A.P.1 
KINETICS OF OXYGEN EXCHANGE BETWEEN NONSTOICHIOMETRIC OXIDES AND GAS PHASE: 
ANALYSIS OF GIBBS ENERGY RELATIONS IN TERMS OF CONTINUOUS HOMOLOGOUS SERIES 
1Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk, Russia 
2Novosibirsk State University, Novosibirsk, Russia 
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17.40 
OP‐I‐11 
Arutyunov V.S.1,2, Troshin K.Y.1,3, Nikitin A.V.1,3, Kiryushin A.A.2, Belyaev A.A.1,3,  
Ozerskii A.V.1,3, Komarov I.K.1,3, Strekova L.N.1 
SELF‐IGNITION DELAY OF METHANE‐ALKANE FUEL COMPOSITIONS 
1Semenov Institute of Chemical Physics RAS, Moscow, Russia 
2ONCLEN LLC, Moscow, Russia 
3Noncommercial Partnership Center of Pulse Detonation Combustion, Moscow, Russia 


19.00 Welcome Reception 
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Afternoon Session 
RECTOR VERMEYLEN Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Professor Yao Wang, China 


14.00 
OP‐II‐1 
Bac S., Avci A.K.  
CFD MODELING OF MICROCHANNEL ENABLED ETHYLENE OXIDE SYNTHESIS WITH INTEGRATED 
COOLING 
Bogazici University, Istanbul, Turkey 


14.20 
OP‐II‐2 
Ambrosetti M., Bracconi M., Balzarotti R., Maestri M., Groppi G., Tronconi E. 
OPEN‐CELL FOAMS AND PERIODIC OPEN‐CELLULAR STRUCTURES AS ENHANCED SUBSTRATES 
FOR THE INTENSIFICATION OF ENVIRONMENTAL CATALYTIC PROCESSES  
Politecnico di Milano, Milan, Italy 


14.40 
OP‐II‐3 
Balzarotti R., Ambrosetti M., Beretta A., Groppi G., Tronconi E. 
INVESTIGATION OF PACKED FOAMS AS A NOVEL REACTOR CONFIGURATION FOR METHANE 
STEAM REFORMING 
Politecnico di Milano, Milan, Italy 


15.00 
OP‐II‐4 
Plachá M.1, Šourek M.1, Koci P.1, Isoz M.1, Vaclavik M.1, Svoboda M.2, Price E.3, Novak V.3, 
Thompsett D.3 
PORE‐SCALE MODELING OF COATED CATALYTIC FILTERS 
1University of Chemistry and Technology, Prague, Czech Republic 
2University of West Bohemia, Pilsen , Czech Republic 
3Johnson Matthey Technology Centre, Sonning Common, Reading, United Kingdom 


15.20 
OP‐II‐5 
Vernikovskaya N.V.1,2, Ovchinnikova E.V.1, Chumachenko V.A.1, Gribovskii A.G.1, Makarshin L.L.1 
MATHEMATICAL MODELING OF HIGHLY EXOTHERMAL PROCESSES IN MICRO‐CHANNEL 
REACTORS 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Novosibirsk State Technical University, Novosibirsk, Russia 
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15.40 Coffee‐break 


Afternoon Session 
RECTOR VERMEYLEN Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Professor Paul Van Steenberge, Belgium 


16.00 
OP‐II‐6 
Minette F., De Wilde J.  
MULTI‐SCALE MODELING OF AN ANNULAR STRUCTURED CATALYTIC REACTOR: APPLICATION 
TO STEAM METHANE REFORMING 
Catholic University of Louvain, Louvain‐la‐Neuve, Belgium 


16.20 
OP‐II‐7 
Claes T., Leblebici M.E., Van Gerven T.  
DESIGN AND EVALUATION OF PHOTOCATALYTIC MICROSTRUCTURED REACTOR MODULES 
Catholic University of Leuven, Leuven, Belgium 


16.40 
OP‐II‐8 
Boon J.1,2 
THE SORBENT AND THE PROCESS: CO2 and H2O SORPTION ENHANCEMENT IN CHEMICAL 
REACTORS 
1Sustainable Process Technology, ECN, Energy Research Center of the Netherlands, Petten,  
The Netherlands 
2Eindhoven University of Technology, Eindhoven, The Netherlands 


17.00 
OP‐II‐9 
Zazhigalov S., Zagoruiko A. 
HYDROGEN PRODUCTION BY SORPTION‐ENHANCED STEAM REFORMING OF HYDROCARBONS 
WITH AUTOTHERMAL SORBENT REGENERATION IN A SUPER‐ADIABATIC HEAT FRONT OF 
CATALYTIC COMBUSTION REACTION 
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
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17.20 
OP‐II‐10 
Bremer J.1, Sundmacher K.1,2 
FLEXIBLE PRODUCTION OF SYNTHETIC METHANE: DYNAMIC OPERATION AND CONTROL OF 
FIXED‐BED METHANATION REACTORS 
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany 
2Otto‐von‐Guericke University Magdeburg, Magdeburg, Germany 


17.40 
OP‐II‐11 
Fukuhara C.1, Watanabe R.1, Ratchahat S.2, Sudoh M.2 
A POWERFUL CO2 METHANATION REACTOR with Ni/CeO2 STRUCTURED CATALYST: 
ESTIMATION OF MASS AND HEAT TRANSFER PROFILES 
1Shizuoka University, Naka‐ku Hamamatsu, Shizuoka, Japan 
2Amano Institute of Technology, Hosoecho, Hamamatsu, Shizuoka, Japan 


19.00 Welcome Reception 
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November 6, Tuesday 


Morning Session 
REFTER Hall 


PLENARY LECTURES 


Chairpersons:  
Professor Kevin Van Geem, Belgium 
Professor Gregory Yablonsky, USA 


09.00 
PL‐3 
Professor Dionisios G. Vlachos 
University of Delaware, Newark, Delaware, USA 
MULTI‐LEVEL BRIDGE BETWEEN REACTION ENGINEERING AND COMPUTATIONAL CATALYSIS 


10.00 
PL‐4 
Mr. Clayton C. Sadler, John Senetar, Geoffrey Fichtl 
Honeywell UOP, Des Plaines, IL, USA 
METHANOL TO OLEFINS: CONCEPT TO COMMERCIALIZATION 


11.00 Coffee‐break 


KEYNOTE LECTURES 


Chairperson: Professor José Carlos Brito Lopes, Portugal 


11.30 
KL‐3 
Professor Eugeniusz Molga 
Warsaw University of Technology, Poland 
APPLICATION OF NEURAL NETWORKS TO APPROXIMATE AND GENERALIZE EXPERIMENTAL 
DATA 


12.00 
KL‐4 
Professor Mario Montes, Oihane Sanz 
University of the Basque Country, San Sebastián, Spain 
INTENSIFICATION OF CATALYTIC PROCESSES WITH STRUCTURED CATALYSTS AND REACTORS 


12.30 Lunch 
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Afternoon Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section I.  
ADVANCES IN CHEMICAL REACTOR FUNDAMENTALS 


Chairperson: Dr. Frédérique Battin‐Leclerc, France 


14.00 
OP‐I‐12 
Skudin V., Gavrilova N.N. 
KINETIC STUDY OF CARBON DIOXIDE CONVERSION OF METHANE ON MEMBRANE CATALYSTS 
UNDER KNUDSEN DIFFUSION CONDITIONS 
D. Mendeleyev University of Chemical Technology of Russia, Moscow, Russia 


14.20 
OP‐I‐13 
Sinev M., Lomonosov V., Gordienko Y., Ponomareva E. 
OPTIMIZATION OF KINETIC DESCRIPTION OF GAS‐PHASE AND CATALYTIC OXIDATION OF C1‐C2 
HYDROCARBONS 
Semenov Institute of Chemical Physics RAS, Moscow, Russia 


14.40 
OP‐I‐14 
Uskov S.I.1,2, Potemkin D.I.1,2, Snytnikov P.1,2, Shigarov A.B.1, Kurochkin A.V.3, Kirillov V.A.1, 
Sobyanin V.A.1 
LOW‐TEMPERATURE STEAM REFORMING OF LIGHT HYDROCARBONS: KINETIC STUDY ON THE 
WAY TO SELECTIVE CONVERSION 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Novosibirsk State University, Novosibirsk, Russia 
3AET OG “INTECH”, Ufa, Russia 


15.00 
OP‐I‐15 
Li H., Gao M., Ye M., Liu Z. 
MESO‐SCALE MODEL OF REACTION‐DIFFUSION PROCESS WITHIN A CATALYST PARTICLE FOR 
MTO PROCESS 
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China 


15.20 
OP‐I‐16 
Ye G.1, Zhou X.1, Coppens M.2 
PROBING CATALYST DEACTIVATION BY COKE AT THE PARTICLE LEVEL DURING PROPANE 
DEHYDROGENATION USING A DISCRETE MODEL 
1East China University of Science and Technology, Shanghai, China 
2Chemical Engineering Department, University College London, London, United Kingdom 


15.40 Coffee‐break 
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Afternoon Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section I.  
ADVANCES IN CHEMICAL REACTOR FUNDAMENTALS 


Chairperson: Professor Mikhail Sinev, Russia 


16.00 
OP‐I‐17 
Bracconi M., Ambrosetti M., Maestri M., Groppi G., Tronconi E.  
EFFECTIVE THERMAL CONDUCTIVITY IN OPEN CELLULAR STRUCTURES: ANALYSIS OF THE 
EFFECT OF THE GEOMETRICAL PROPERTIES AND PERFORMANCE COMPARISON 
Politecnico di Milano, Milan, Italy 


16.20 
OP‐I‐18 
Uglietti R., Bracconi M., Maestri M. 
COUPLING MICROKINETIC MODELING WITH CFD‐DEM FOR THE SIMULATION OF FLUIDIZED 
REACTIVE SYSTEMS 
Politecnico di Milano, Milan, Italy 


16.40 
OP‐I‐19 
Donaubauer P., Schmalhorst L., Hinrichsen O. 
2D CONTINUUM MODELS FOR FIXED‐BED REACTOR DESIGN: IMPACT OF 2D FLOW FIELD ON 
INLET REGION CHARACTERISTICS 
Technical University of Munich, Munich, Germany 


17.00 


Flash presentations 


Poster Session 


Beer Reception 
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Afternoon Session 
RECTOR VERMEYLEN Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Professor Matteo Maestri, Italy 


14.00 
OP‐II‐12 
Shoynkhorova T.B.1, Snytnikov P.1,2,3, Simonov P.1,3, Potemkin D.1,2, Rogozhnikov V.1, Kulikov A.1,  
Belyaev V.1,2,3, Sobyanin V.1 
SYNGAS PRODUCTION FOR SOFC VIA CATALYTIC OXIDATION OF DIESEL FUEL  
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Novosibirsk State University, Novosibirsk, Russia 
3UNICAT Ltd, Novosibirsk, Russia 


14.20 
OP‐II‐13 
He Z., Minette F., De Wilde J. 
NUMERICAL SIMULATION OF INDUSTRIAL SCALE AUTOTHERMAL CHEMICAL LOOPING 
METHANE REFORMING FOR SYNGAS PRODUCTION IN A DUAL FLUIDIZED BED REACTOR 
Catholic University of Louvain, Louvain‐la‐Neuve, Belgium 


14.40 
OP‐II‐14 
Cherkasov N.1,2, Bai Y.1, Exposito A.1, Rebrov E.1,2  
PERFORMANCE AND SELECTIVITY COMPARISON OF PACKED BED AND TUBE REACTORS IN 
SELECTIVE HYDROGENATION 
1Stoli Catalysts Ltd, Coventry, United Kingdom 
2University of Warwick, Coventry, United Kingdom 


15.00 
OP‐II‐15 
Guffanti S., Visconti C.G., Groppi G. 
THE EFFECTS OF INTRAPARTICLE DIFFUSION PHENOMENA ON DIMETHYL ETHER DIRECT 
SYNTHESIS 
Politecnico di Milano, Milan, Italy 


15.20 
OP‐II‐16 
Banzaraktsaeva S., Ovchinnikova E.V., Chumachenko V.A. 
ETHANOL‐TO‐ETHYLENE DEHYDRATION ON RING‐SHAPED ALUMINA CATALYST IN TUBULAR 
REACTOR 
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 


15.40 Coffee‐break 
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Afternoon Session 
RECTOR VERMEYLEN Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Dr. Pasi Tolvanen, Finland 


16.00 
OP‐II‐17 
Driessen R.T., van der Linden J.J.Q., Bos M.J., Kersten S.R.A., Brilman D.W.F. 
MODELING OF CO2 ADSORPTION ON SUPPORTED AMINE SORBENTS IN A MULTISTAGE 
FLUIDIZED BED 
Sustainable Process Technology, University of Twente, Enschede, The Netherlands 


16.20 
OP‐II‐18 
Fernengel J.1, Bolton L.2, Hinrichsen O.1 
CHARACTERISATION AND DESIGN OF SINGLE PELLET STRING REACTORS USING NUMERICAL 
SIMULATION 
1Technical University of Munich, Garching‐Munich, Germany 
2BP, Sunbury‐on‐Thames, United Kingdom 


16.40 
OP‐II‐19 
Frey M., Violet L., Seyidova L., Richard D., Fongarland P. 
HYBRID CATALYSIS: A NEW REACTOR DESIGN FOR ONE‐POT SYNERGISTIC COUPLING OF 
ENZYMATIC AND HETEROGENEOUS CATALYSIS 
Laboratory of Catalytic Process Engineering, CNRS‐CPE‐Lyon, Villeurbanne, France 


17.00 


Flash presentations 


Poster Session 


Beer Reception 
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November 7, Wednesday  


Morning Session 
REFTER Hall 


PLENARY LECTURE 


Chairpersons:  
Professor Manos Mavrikakis, USA 
Professor Andrey Zagoruiko, Russia 


09.00 
PL‐5 
Professor Dr.‐Ing. Kai Sundmacher1,2, Steffen Linke2, Kevin McBride1 
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany 
2Otto‐von‐Guericke University, Magdeburg, Germany 
SOLVENT SELECTION AND TUNING FOR SUSTAINABLE CHEMICAL PROCESSES 


KEYNOTE LECTURES 


10.00 
KL‐5 
Dr. Bénédicte Cuenot 
CERFACS ‐ European Centre for Research and Advanced Training in Scientific Computation, 
Toulouse, France 
NUMERICAL SIMULATION OF COMBUSTION: FROM FUNDAMENTALS TO APPLICATIONS 


10.30 
KL‐6 
Dr. Marco Van Goethem 
Technip Benelux B.V., Zoetermeer, The Netherlands 
TechnipFMC’s SWIRL FLOW TUBE® RADIANT COIL: FROM PATENT TO APPLICATION 


11.00 Coffee‐break 
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Morning Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section I.  
ADVANCES IN CHEMICAL REACTOR FUNDAMENTALS 


Chairperson: Professor Dr. Gunther Kolb, Germany 


11.30 
OP‐I‐20 
Castillo‐Araiza C.O., Gómez‐Ramos G.A., Couder‐Garcia M., Buenrostro‐Figueroa J.,  
Huerta‐Ochoa S., Prado‐Barragan L.A.  
CHARACTERIZATION OF HYDRODYNAMICS, HEAT AND MASS TRANSPORT UNDER ABIOTIC 
AND BIOTIC CONDITION IN A TRAY BIOREACTOR FOR THE PRODUCTION OF PROTEASES OUT 
OF AGROINDUSTRIAL WASTES 
Autonomous Metropolitan University‐Iztapalapa, Iztapalapa, Mexico 


11.50 
OP‐I‐21 
Chezeau B., Fontaine J.‐P., Vial Ch. 
EXPERIMENTAL ANALYSIS OF HYDROGEN PRODUCTION, LIQUID‐TO‐GAS MASS TRANSFER AND 
MIXING IN DARK FERMENTATION PROCESS 
Clermont Auvergne University, CNRS, Sigma Clermont. Institut Pascal, Clermont‐Ferrand, France 


12.10 
OP‐I‐22 
Danican A., Chezeau B., Fontaine J., Vial C. 
CHARACTERIZATION OF THE LOCAL HYDROMECHANICAL STRESS THROUGH EXPERIMENTAL 
AND NUMERICAL ANALYSIS OF HYDRODYNAMICS UNDER DARK FERMENTATION OPERATING 
CONDITIONS 
Clermont Auvergne University, CNRS, Sigma Clermont. Institut Pascal, Clermont‐Ferrand, France 


12.30 Lunch 
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Afternoon Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section I. 
ADVANCES IN CHEMICAL REACTOR FUNDAMENTALS 


Chairperson: Professor Sascha Kersten, The Netherlands 


14.00 
OP‐I‐23 
Dorokhov I., Hellgardt K., Hii K.K.(M)  
SPATIALLY‐RESOLVED REACTION CALORIMETRY WITH PACKED BED REACTOR 
Imperial College London, London, United Kingdom 


14.20 
OP‐I‐24 
Gomez N.1,2, Vandewalle L.2, Reyniers P.2, Molina A.1, Van Geem K.2, Marin G.2 
CAPTURING THE EFFECT OF PARTICLE CLUSTERS IN A DOWNFLOW REACTIVE SYSTEM VIA 
LARGE EDDY SIMULATIONS 
1National University of Colombia, Medellin, Colombia 
2Ghent University, Laboratory for Chemical Technology, Ghent, Belgium 


14.40 
OP‐I‐25 
Greiner R.1,2, Prill T.3, Iliev O.3, van Setten B.2, Votsmeier M.1,2 
TOMOGRAPHY BASED SIMULATION OF REACTIVE FLOW AT THE MICRO‐SCALE: PARTICULATE 
FILTERS WITH WALL INTEGRATED CATALYST 
1Darmstadt University of Technology, Darmstadt, Germany 
2Umicore AG & Co. KG, Hanau, Germany 
3Fraunhofer ITWM, Kaiserslautern, Germany 


Section III.  
CHEMICAL REACTORS AND TECHNOLOGIES FOR TARGETED APPLICATIONS 


15.00 
OP‐III‐1 
Rodriguez‐Vega P., Ateka A., Aguayo A., Bilbao J. 
DIRECT SYNTHESIS OF DIMETHYL ETHER (DME) from CO/CO2 in a MEMBRANE REACTOR  
University of the Basque Country UPV/EHU, Bilbao, Spain 


15.20 
OP‐III‐2 
Ozturk N.F., Avci A.K. 
INTENSIFIED DME PRODUCTION FROM SYNTHESIS GAS WITH CO2 
Bogazici University, Istanbul, Turkey 


15.40 Coffee‐break 
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Morning Session 
RECTOR VERMEYLEN Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Professor Choji Fukuhara, Japan 


11.30 
OP‐II‐20 
Hernández‐Ortiz J.C.1, Van Steenberge P.


1, Duchateau J.2, Toloza C.2, Schreurs F.2, Reyniers M.1,  
Marin G.1, D'hooge D.R.1 
MULTIPHASE REACTOR MODELING FOR REACTIVE PROCESSING OF POLYOLEFINES 
1Ghent University, Ghent, Belgium 
2SABIC Geleen, Geleen, The Netherlands 


11.50 
OP‐II‐21 
Nuñez Manzano M., Kulkarni S.R., Marin G.B., Nopens I., Heynderickx G.J., Van Geem K. 
PROOF OF CONCEPT CFD STUDY OF POLYSTYRENE PYROLYSIS IN A GAS‐SOLID VORTEX 
REACTOR 
Ghent University, Ghent, Belgium 


12.10 
OP‐II‐22 
Mohammad A.F.1, El‐Naas M.H.2, Al‐Marzouqi A.H.1, Al‐Marzouq M.H.1, Suleiman M.I.3,  
Al‐Musharfy M.3, Firmansyah T.3 
CFD SIMULATION OF A NOVEL GAS‐LIQUID REACTOR SYSTEM  
1United Arab Emirates University, Al‐Ain, United Arab Emirates 
2Qatar University, Doha, Qatar 
3ADNOC Refining Research Center, Abu Dhabi, United Arab Emirates 


12.30 Lunch 
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Afternoon Session 
RECTOR VERMEYLEN Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Professor Eugeniusz Molga, Poland 


14.00 
OP‐II‐23 
Möller K., Khazali A. 
X‐GTL: A STUDY OF THE PROCESS OPTIONS USING A MULTI‐PHASE PROCESS MODELLING 
FRAMEWORK 
University of Cape Town, Cape Town, South Africa 


14.20 
OP‐II‐24 
Ovchinnikova E.V., Chumachenko V.A., Andrushkevich T.V. 
NICOTINIC ACID PRODUCTION AT ELEVATED β‐PICOLINE LOADING: THEORETICAL STUDIES OF 
THE POSSIBILITY TO INTENSIFY THE PROCESS 
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 


14.40 
OP‐II‐25 
Rebrov E.1,2, Fernández‐Garcia J.2, Matveeva V.1, Cherkasov N.2, Sulman E.1 
TRANSIENT OPERATION: A NOVEL WAY TO ENHANCE SELECTIVITY IN GLUCOSE 
ISOMERIZATION REACTION 
1Tver Technical University, Tver, Russia 
2University of Warwick, Coventry, United Kingdom 


15.00 
OP‐II‐26 
Chakraborty S., Paul S.K., Dutta S.K.  
SPATIOTEMPORAL OSCILLATIONS IN BATCH REACTORS PROMOTE LIGNOCELLULOSIC BIOFUEL 
PRODUCTION 
Indian Institute of Technology Kharagpur, Kharagpur, India 


15.20 
OP‐II‐27 
Zagoruiko A. 
LOW‐TEMPERATURE CHEMISORPTION‐ENHANCED CATALYTIC DECOMPOSITION OF 
HYDROGEN SULFIDE: THERMODYNAMIC ANALYSIS AND PROCESS CONCEPT 
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 


15.40 Coffee‐break 







24 


November 8, Thursday 


Morning Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section III.  
CHEMICAL REACTORS AND TECHNOLOGIES FOR TARGETED APPLICATIONS 


Chairperson: Professor Klaus Möller, South Africa 


10.00 
OP‐III‐3 
Currie R.1, Nikolic D.2, Petkovska M.2, Simakov D.1 
CO2 CONVERSION ENHANCEMENT IN A PERIODICALLY OPERATED SABATIER REACTOR: 
NONLINEAR FREQUENCY RESPONSE ANALYSIS AND SIMULATION‐BASED STUDY 
1University of Waterloo, Waterloo, Ontario, Canada 
2University of Belgrade, Belgrade, Serbia 


10.20 
OP‐III‐4 
Lan L., Wang A., Wang Y. 
APPLICATION OF DIELECTRIC‐BARRIER DISCHARGES REACTOR in CO2 HYDROGENATION 
Dalian University of Technology, Dalian, China 


10.40 
OP‐III‐5 
Moioli E., Gallandat N., Züttel A. 
OPTIMAL REACTOR DESIGN for CO2 METHANATION on Ru/Al2O3 
Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland 
Empa Materials Science & Technology, Dubendorf, Switzerland 


11.00 Coffee‐break 


Chairperson: Professor David Simakov, Canada 


11.30 
OP‐III‐6 
Dubinin Y.V.1,2, Yazykov N.1, Simonov A.1, Yakovlev V.1,2 
COMBUSTION IN THE FLUIDIZED BED OF CATALYST AS AN EFFECTIVE METHOD OF OIL WASTE 
UTILIZATION 
1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Novosibirsk State University, Novosibirsk, Russia 
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11.50 
OP‐III‐7 
Frassoldati A.1, Cuoci A.1, Saufi A.E.1, Faravelli T.1, Calabria R.2, Chiariello F.2, Massoli P.2 
AN EXPERIMENTAL AND MODELLING STUDY OF FAST BIOMASS PYROLYSIS OIL DROPLET 
COMBUSTION 
1Politecnico di Milano, Milan, Italy 
2Istituto Motori, Department of Engineering, ICT and Technologies for Energy and 
Transportation, National Research Council of Italy, Napoli, Italy 


12.10 
OP‐III‐8 
Krasnikov D.V.1, Iakovlev V.Ya.1, Gilshteyn E.P.1, Kopylova D.S.1, Grebenko A.K.1,  
Tsapenko A.P.1, Nasibulin A.G.1,2 
THERMOPHORETIC DEPOSITION COMBINED WITH AEROSOL CVD SYNTHESIS OF SINGLE‐
WALLED CARBON NANOTUBES FOR THIN, CONDUCTIVE, AND TRANSPARENT FILMS OF 
EXCEPTIONAL CHARACTERISTICS 
1Skolkovo Institute of Science and Technology, Moscow, Russia 
2Aalto University, Espoo, Finland 


12.30 Lunch 


Afternoon Session 
REFTER Hall 


ORAL PRESENTATIONS 


Section III.  
CHEMICAL REACTORS AND TECHNOLOGIES FOR TARGETED APPLICATIONS 


Chairperson: Professor Ahmet Kerim Avci, Turkey 


14.00 
OP‐III‐9 
Marathe P., Westerhof R., Kersten S. 
PYROLYSIS OF LIGNIN: EFFECTS OF MOLECULAR WEIGHT AND BOND TYPE 
University of Twente, Enschede, The Netherlands 


14.20 
OP‐III‐10 
Hočevar B.1,2, Huš M.1, Grilc M.1, Likozar B.1 
MUCIC ACID HYDRODEOXYGENATION OVER METAL CATALYSTS 
1National Institute of Chemistry, Ljubljana, Slovenia 
2University of Ljubljana, Slovenia 
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14.40 
OP‐III‐11 
Möller K., Mhlongo M., Dalton R., Embling N., Collins R. 
MULTI‐PHASE, MULTI‐SPECIES MODEL FOR THE CONVERSION OF RECYCLED PLASTIC TO DIESEL 
University of Cape Town, Cape Town, South Africa 


15.00 
OP‐III‐12 
Violet L., Mifleur A., Vanoye L., Favre‐Réguillon A., Philippe R., Fongarland P. 
CATALYTIC DEHYDROGENATION COUPLING OF ALCOHOLS TO ESTERS: MECHANISM AND 
KINETIC STUDIES FOR MODELLING PURPOSES 
Laboratory of Catalytic Process Engineering, UMR CNRS‐CPE‐Lyon, University Lyon 1, 
Villeurbanne‐Lyon, France 


15.20 
OP‐III‐13 
Sulman A.1, Matveeva V.1,2, Lakina N.1, Golikova E.1, Sulman M.1, Tikhonov B.1, Sidorov A.1, 
Sulman E.1 
MAGNETICALLY SEPARABLE BIOCATALYSTS BASED ON IMMOBILIZED ENZYMES 
1Tver State Technical University, Tver, Russia 
2Tver State University, Tver, Russia 


15.40 
OP‐III‐14 
Venezia B.1, Ellis P.2, Gavriilidis A.1 
CONTINUOUS CATALYTIC AEROBIC OXIDATION OF BENZYL ALCOHOL IN A SLURRY  
TUBE‐IN‐TUBE REACTOR USING Au‐Pd/TiO2 CATALYST 
1Chemical Engineering Department, University College London, London, United Kingdom 
2Johnson Matthey Technology Centre, Sonning Common, Reading, United Kingdom 


16.00 
OP‐III‐15 
Shivaprasad P., Patterson D., Jones M., Emanuelsson E. 
PROCESS INTENSIFICATION OF ENZYME CATALYSED KINETIC RESOLUTION OF  
1‐PHENYLETHANOL IN A SPINNING MESH DISC REACTOR 
University of Bath, Bath, United Kingdom 


16.20 Closing 
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November 8, Thursday 


Morning Session 
BLANCQUAERT Hall 


ORAL PRESENTATIONS 


Section II.  
CHEMICAL REACTION ENGINEERING AND REACTOR DESIGN – NOVEL EXPERIMENTAL 


APPROACHES, MODELING, SCALE‐UP AND OPTIMIZATION 


Chairperson: Professor Saikat Chakraborty, India 


10.00 
OP‐II‐28 
Cordero‐Lanzac T., Aguayo A.T., Castaño P., Bilbao J.  
MODELING THE CONVERSION OF DIMETHYL ETHER INTO OLEFINS CONSIDERING THE HZSM‐5 
BASED CATALYST DEACTIVATION 
University of the Basque Country, Bilbao, Spain 


10.20 
OP‐II‐29 
Santos E., Rijo B., Lemos M.A., Lemos F. 
PLASTIC WASTE PYROLYSIS IN A SEMI‐BATCH REACTOR 
Instituto Superior Técnico, Lisboa, Portugal 


10.40 
OP‐II‐30 
Freites Aguilera A.1, Tolvanen P.1, Leveneur S.1,2 , Mikkola J.1,3, Marchant T.4, Salmi T.1 
MODELING OF MICROWAVE IRRADIATED AND HETEROGENEOUSLY CATALYSED EPOXIDATION 
OF VEGETABLE OILS 
1Åbo Akademi University, Turku, Finland 
2Rouen Normandie University, Saint‐Étienne‐du‐Rouvray, France 
3Umea University, Umeå, Sweden 
4University of Wollongong, Wollongong, Australia 


11.00 Coffee‐break 


Chairperson: Dr. Dominique Richard, France 


11.30 
OP‐II‐31 
Jokiel M.1, Sundmacher K.1,2 
NOVEL REACTOR DESIGNS FOR THE HYDROFORMYLATION OF LONG‐CHAIN OLEFINS: 
FLEXIBILITY AND AUTOMATION ASPECTS 
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany 
2Otto‐von‐Guericke University Magdeburg, Magdeburg, Germany 
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Section IV.  
ADVANCED PROCESSING OF CONVENTIONAL AND UNCONVENTIONAL HYDROCARBON 


FEEDSTOCKS 


11.50 
OP‐IV‐1 
Song Y.1, Marrodán L.2, Vin N.1, Herbinet O.1, Assaf  E.3, Fittschen C. 3, Stagni A.4,  
Faravelli T.4, Alzueta M.U. 2, Battin‐Leclerc F. 1 
THE SENSITIZING EFFECTS OF NO2 and NO ON METHANE LOW TEMPERATURE OXIDATION IN A 
JET STIRRED REACTOR 
1Reactions and Process Engineering Laboratory, CNRS, Lorraine University, Nancy, France 
2University of Zaragoza, Zaragoza, Spain 
3Université Lille, Lille, France 
4Politecnico di Milano, Milan, Italy 


12.10 
OP‐IV‐2 
Fedotov A.1, Uvarov V.2, Tsodikov M.1 
INNOVATIVE HYBRID MEMBRANE‐CATALYTIC TECHNOLOGY FOR SYNGAS, HYDROGEN AND 
VALUABLE MONOMERS PRODUCTION 
1A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia 
2The Institute of Structural Macrokinetics, RAS, Moscow, Russia 


12.30 Lunch 


Afternoon Session 
BLANCQUAERT Hall 


ORAL PRESENTATIONS 


Section IV.  
ADVANCED PROCESSING OF CONVENTIONAL AND UNCONVENTIONAL HYDROCARBON 


FEEDSTOCKS 


Chairperson: Professor Vladimir Arutyunov, Russia 


14.00 
OP‐IV‐3 
Cheula R.1, Soon A.2, Maestri M.1 
STRUCTURE‐DEPENDENT MULTISCALE MODELLING OF CATALYTIC PROCESSES: AN 
APPLICATION TO THE CATALYTIC PARTIAL OXIDATION OF METHANE ON RHODIUM 
1Politecnico di Milano, Milan, Italy 
2Yonsei University, Seoul, South Korea 
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14.20 
OP‐IV‐4 
Belinskaya N.S.1, Ivanchina E.D.1, Frantsina E.V.1, Lutsenko A.S.1, Nazarova G.Y.1,  
Glik P.A.1, Dementyev A.Y.2 
PROGNOSTIC MODELLING OF DESTRUCTIVE PROCESSES OF HYDROCARBON FEEDSTOCK 
CONVERSION 
1National Research Tomsk Polytechnic University, Tomsk, Russia 
2PJSC “KINEF”, Tomsk, Russia 


14.40 
OP‐IV‐5 
Maksimov A.L., Magomedova M.V., Peresypkina E.G., Afokin M.I. 
INTEGRATED TECHNOLOGY OF OLEFINS SYNTHESIS FROM DYMETHYL ETHER 
A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia 


15.00 
OP‐IV‐6 
Mekki‐Berrada A., Zani M., Souchon V., Pereira De Oliveira L.C., Chainet F. 
COMPARATIVE STUDY OF THE SULFUR SPECIATION by GC and GC×GC for GAS OIL 
CHARACTERIZATION in HDT PROCESS SIMULATION 
IFP Energies Nouvelles, Solaize, France 


15.20 
OP‐IV‐7 
Madlokazi M.1, Möller K.2 
A THERMODYNAMICALLY CONSISTENT REACTOR MODEL FOR THE FURNACE BLACK PROCESS 
1Orion Engineered Carbons, Port Elizabeth, South Africa 
2University of Cape Town, Cape Town, South Africa 


15.40 
OP‐IV‐8 
Palos R., Gutiérrez A., Castaño P., Azkoiti M.J., Arandes J.M., Bilbao J. 
MODELING THE REMOVAL OF SULFUR, AROMATICS AND HEAVIER COMPOUNDS OF LIGHT 
CYCLE OIL 
University of the Basque Country, Bilbao, Spain 


REFTER Hall 


16.20 Closing 
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CHEMREACTOR‐23 Special Sessions 
OUDE INFIRMERIE Hall 


Oral presentations 


BIOLEUM session 
November 6, Tuesday, afternoon 


Chairperson: Professor Wolter Prins, Belgium 


14.00 


Introduction to BIOLEUM: Kevin Van Geem 10 min 


14.10 
SriBala G., Carstensen H., Van Geem K., Marin G.B. 
ON THE REACTIVITY OF MONO‐LIGNOL DERIVATIVES 
Ghent University, Ghent, Belgium 


14.30 
Kulkarni S.R., Gonzalez Quiroga A., Heynderickx G.J., Van Geem K., Marin G.B. 
EXPERIMENTAL DEMONSTRATION OF BIOMASS FAST PYROLYSIS IN THE GAS‐SOLID VORTEX 
REACTOR 
Ghent University, Ghent, Belgium 


14.50 
Kulkarni S.R., Schuerewegen C., Manzano M.N., Heynderickx G.J., Van Geem K., Marin G.B. 
EXPERIMENTAL HEAT TRANSFER MODELLING IN A GAS‐SOLID VORTEX UNIT 
Ghent University, Ghent, Belgium 


15.10 
Pala M., Guo K., Prévoteau A., Rabaey K., Ronsse F., Prins W. 
ELECTROCHEMICAL UPGRADING OF FAST PYROLYSIS BIO‐OIL 
Ghent University, Ghent, Belgium 


15.30 
Jia C.1, Bueken B.1, Van Geem K.2, De Vos D.1 
ISOLATION OF PHENOLICS FROM BIO‐OIL USING FLEXIBLE MIL‐53 AS HIGHLY SELECTIVE 
ADSORBENT 
1Centre for Surface Chemistry and Catalysis K.U. Leuven, Leuven, Belgium 
2Ghent University, Ghent, Belgium 
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IMPROOF session 
November 8, Thursday, afternoon 


Chairperson: Dr. Marko Djokic, Belgium 


14.00 


Introduction to IMPROOF: Kevin Van Geem 10 min 


14.10 
Namysl S.1, Pelucchi M.2, Herbinet O.1, Ranzi E.2, Frassoldati A.2, Faravelli T.2, Battin‐Leclerc F.1 
THE OXIDATION OF LINEAR C4‐C6 ALDEHYDES: AN EXPERIMENTAL AND KINETIC MODELLING 
STUDY 
1Reactions and Process Engineering Laboratory, CNRS, Lorraine University, Nancy, France 
2Politecnico di Milano, Milan, Italy 


14.30 
Pelucchi M.1, Namysl S.2, Herbinet O.2, Frassoldati A.1, Faravelli T.1, Battin‐Leclerc F.2 
AN EXPERIMENTAL AND KINETIC MODELLING STUDY OF C4‐C5 CARBOXYLIC ACIDS PYROLYSIS 
AND OXIDATION IN A JET STIRRED REACTOR 
1Politecnico di Milano, Milan, Italy 
2Reactions and Process Engineering Laboratory, CNRS, Lorraine University, Nancy, France 


14.50 
Virgilio M.1, Van Geem K.2, Arts T.1, Marin G.B.2 
EXPERIMENTAL AERO‐THERMAL INVESTIGATIONS OF SWIRLING FLOWS IN THREE‐
DIMENSIONAL RIBBED TUBES 
1von Karman Institute for Fluid Dynamics, St. Gilles/Brussel, Belgium 
2Ghent University, Ghent, Belgium 


15.10 
Dedeyne J.N.1, Virgilio M.2, Arts T.2, Van Geem K.1, Marin G.B.1 
PROCESS INTENSIFICATION IN STEAM CRACKING: FLOW CHARACTERISTICS OF SPHERICAL 
DIMPLES 
1Ghent University, Ghent, Belgium 
2von Karman Institute for Fluid Dynamics, St. Gilles/Brussel, Belgium 


15.30 
Vangaever S., Reyniers P., Heynderickx G.J., Van Geem K. 
COMPUTATIONAL FLUID DYNAMIC‐BASED STUDY OF THE STEAM CRACKING PROCESS USING A 
HYBRID 3D‐1D APPROACH 
Ghent University, Ghent, Belgium 
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15.50 
Symoens S.1, Djokic M.1, Zhang J.1, Bellos G.2, Jakobi D.3, Weigandt J.3, Klein S.3,  
Battin‐Leclerc F.4, Heynderickx G.1, Thielen J.V.5, Cuenot B.6, Faravelli T.7, Theis G.8, Lenain P.9, 
Munoz A.E.10, Olver J.11, Van Geem K.1 
"PAS DE DEUX" OF HIGH‐TEMPERATURE ALLOY AND 3D REACTOR TECHNOLOGY FOR STEAM 
CRACKING COILS: IMPACT ON PRODUCT YIELDS AND COKE FORMATION 
1Ghent University, Ghent, Belgium 
2DOW Benelux B.V., Terneuzen, The Netherlands 
3Schmidt + Clemens GmbH + CO. KG, Lindlar, Germany 
4National Center for Scientific Research, Nancy, France 
5CRESS B.V., Breskens, The Netherlands 
6European Centre for Research and Advanced Training in Scientific Computation, Toulouse, France 
7Politecnico di Milano, Milan, Italy 
8John Zink International, Luxembourg SARL, Luxembourg 
9Ayming France, Lyon, France 
10AVGI, Ghent, Belgium 
11Emmisshield Inc, Blacksburg, Virginia, USA 
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November 6, Tuesday 
Afternoon Session 


17.00 


POSTER SESSION 


FLASH PRESENTATIONS 
REFTER Hall 


Sanz O., Egaña A., Montes M. 
FISCHER‐TROPSCH SYNTHESIS INTENSIFICATION IN METALLIC FOAM STRUCTURES  
University of the Basque Country, San Sebastián‐Donostia, Spain 


Méndez D., Cambra J.F., Barrio V.L. 
POWER‐TO‐GAS: BIMETALLIC CATALYSTS SUPPORTED ON Al2O3 FROM A SULPHUR CONTAING 
BIOGAS 
University of the Basque Country, Bilbao, Spain 


Lissens M., Mendes P.S., Sabbe M.K., Thybaut J. 
METHANOL‐TO‐OLEFINS: A DETAILED DESCRIPTION FOR THE AROMATIC HYDROCARBON POOL 
Ghent University, Ghent, Belgium 


Bac S.1, Say Z.2, Bulutoglu P.1, Ozensoy E.2, Avci A.K.1 
CO2 REFORMING OF GLYCEROL OVER Rh‐BASED CATALYSTS 
1Bogazici University, Istanbul, Turkey 
2Bilkent University, Ankara, Turkey 


Rijo B.1, Lemos F.1, Fonseca I.2, Vilelas A.3 
STUDY OF DIFFERENT KINETIC EXPRESSIONS ON THE ACETYLENE HYDROGENATION 
1Instituto Superior Técnico, Lisboa, Portugal 
2Universidade Nova de Lisboa, Caparica, Portugal 
3REPSOL Polímeros, Sines, Portugal 


Yamada H.1, Kashifuku H.1, Tagawa T.2  
REACTION RATE ENHANCEMENT IN GAS‐LIQUID‐LIQUID‐SOLID FOUR‐PHASE CONTINUOUS 
FLOW REACTOR 
Nagoya University, Nagoya, Japan 
National Institute of Technology, Toyota College, Japan 


Hao Z., Lapkin A. 
AN EFFICIENT APPROACH TO KINETIC PARAMETER ESTIMATION THROUGH DYNAMIC‐MODEL‐
BASED  DESIGN OF EXPERIMENT 
University of Cambridge, Cambridge, United Kingdom 


Gavrilova N.N., Myachina M.A., Ardashev D.V., Nazarov V.V., Skudin V.V. 
SYNTHESIS OF MEMBRANE CATALYSTS BASED ON MESOPOROUS SUPPORT FOR DRY 
REFORMING OF METHANE 
D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia   







34 


POSTER PRESENTATIONS 


KAPITTELZAAL Hall 


PP‐1 Aksenov D.G., Kodenev E.G., Ovchinnikova E.V., Echevskii G.V., Chumachenko V. 
PROCESSING of C4‐FRACTION CONTAINED IN THE WASTE GASES OF REFINERIES BY CATALYTIC 
ISOMERISATION TO ISOBUTANE on Pd/SULFATED ZIRCONIA 
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 


PP‐2 Al‐Dalama K. 
INCREASING THE EFFICIENCY OF THE HDS PROCESS BY THE MODIFICATION OF Ni/Mo/W 
HYDROTREATING CATALYST SUPPORTED ON MODIFIED SUPPORTS 
Kuwait Institute For Scientific Research, Kuwait City, Kuwait 


PP‐3 Alghamdi N., Bavykina A., Gascon J., Sarathy S. 
MODELING CO2 to METHANOL CONVERSION IN A STAGNATION FLOW REACTOR 
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia 


PP‐4 Authayanun S.1, Saebea D.2, Patcharavorachot Y.3, Arpornwichanop A.4 
MODEL BASED EVALUATION OF ALKALINE ANION EXCHANGE MEMBRANE FUEL CELLS WITH 
UNBALANCED PRESSURE OPERATION 
1Srinakharinwirot University, Nakhon Nayok, Thailand 
2Burapha University, Chonburi, Thailand 
3King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand 
4Chulalongkorn University, Bangkok, Thailand 


PP‐5 Bac S.1, Say Z.2, Bulutoglu P.1, Ozensoy E.2, Avci A.K.1 
CO2 REFORMING OF GLYCEROL OVER Rh‐BASED CATALYSTS 
1Bogazici University, Istanbul, Turkey 
2Bilkent University, Ankara, Turkey 


PP‐6 Bazaikin Y.1,3, Malkovich E. 1,3, Okunev A.1,2, Derevschikov V.2,3,4 
NEW MODELS FOR THE DESCRIPTION OF SORPTIVE AND TEXTURAL PROPERTIES OF 
CaO‐BASED SORBENTS CHANGING DURING REPETITIVE SORPTION/REGENERATION 
CYCLES 
1Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia 
2Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
3Novosibirsk State University, Novosibirsk, Russia 
4Ltd «DINON», Novosibirsk, Russia 


PP‐7 Bogdanov I., Altynov A., Kirgina M.V. 
CALCULATION METHOD FOR PREDICTION OF THE CETANE INDEX OF BLENDED DIESEL FUELS 
TAKING INTO ACCOUNT NON‐ADDITIVITY 
National Research Tomsk Polytechnic University, Tomsk, Russia 


PP‐8 Bogdanov I., Altynov A., Kirgina M.V. 
INFLUENCE OF DIESEL FUEL COMPOSITION ON THE EFFICIENCY OF THE LOW‐TEMPERATURE 
ADDITIVES 
National Research Tomsk Polytechnic University, Tomsk, Russia 


PP‐9 Boukha Z., Ayastuy J., González‐Velasco J., Gutiérrez‐Ortiz M. 
METALLIC MICROREACTORS FOR THE INTENSIFICATION OF CATALYTIC HYDROGEN 
PRODUCTION AND PURIFICATION PROCESSES 
University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain 
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PP‐10 Castillo‐Montiel J.E., Sotelo‐Boyás R. 
REACTOR SIMULATION FOR THE OPTIMAL PRODUCTION OF BIO‐JET FUEL FROM THE 
HYDROPROCESSING OF JATROPHA OIL 
National Polytechnic Institute, Mexico City, Mexico 


PP‐11 Chawdhury P., Kumar D., Subrahmanyam Ch. 


NTP ASSISTED SINGLE STEP METHANE CONVERSION TO METHANOL OVER Cu/‐Al2O3 CATALYST 
MODIFIED BY ZnO, ZrO2 AND MgO AS PROMOTERS 
Indian Institute of Technology Hyderabad, Telangana, India 


PP‐12 Chuzlov V.A., Nazarova G.Y., Ivanchina E.D., Ivaskina E.N. 
PREDICTIVE MODELLING OF CATALYTIC CRACKING AND FUELS BLENDING TO INCREASE OF THE 
GASOLINE PRODUCTION ECONOMICAL EFFICIENCY BY REDUCING THE QUALITY GIVEAWAY 
National Research Tomsk Polytechnic University, Tomsk, Russia 


PP‐13 Ciemiega A.1, Maresz K.1, Mrowiec‐Bialon J.1,2 
MONOLITHIC MICROREACTORS OF DIFFERENT STRUCTURE AS AN EFFECTIVE TOOL FOR MPV 
REACTION 
1Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland 
2Silesian University of Technology, Gliwice, Poland 


PP‐14 Currie R., Simakov D. 
CATALYTIC HEAT EXCHANGER TYPE MEMBRANE REACTOR FOR CO2 HYDROGENATION:  
MODEL‐BASED ANALYSIS AND FEASIBILITY ASSESSMENT 
University of Waterloo, Waterloo, Ontario, Canada 


PP‐15 Dobrynkin N.M., Batygina M.V., Noskov A.S. 
THE PROCESS DEVELOPMENT OF BAYERITE PREPARATION BY SELF‐HYDROLYSIS OF ALUMINUM 
CHLORIDE HEXAHYDRATE IN BATCH REACTOR 
Boreskov Institute of Catalysis, Novosibirsk, Russia 


PP‐16 Dolganov I., Khlebnikova E., Dolganova I., Ivaskina E.N. 
NUMERICAL SIMULATION OF BENZENE WITH ETHYLENE ALKYLATION CONSIDERING CATALYST 
DEACTIVATION 
National Research Tomsk Polytechnic University, Tomsk, Russia 


PP‐17 Dolganov I.M., Dolganova I.O., Ivanchina E.D., Ivashkina E.N., Shandybina A.V. 
INDUSTRIAL SYNTHESIS OF LINEAR ALKYLBENZENE SULFONIC ACID IN A MULTISTAGE REACTOR 
PROCESS UNDER NONSTATIONARY CONDITIONS 
National Research Tomsk Polytechnic University, Tomsk, Russia 


PP‐18 Doluda V.1, Manaenkov O.1, Nikoshvili L1., Stepacheva A.1, Shimanskaya E.1, Filatova A.
1,  


Matveeva V.1,2, Sulman M.1, Sulman E.1 
COMPLEX CONVERSION OF BIOMASS OVER POLYMER‐BASED CATALYSTS FOR THE 
PRODUCTION OF SECOND‐GENERATION BIODERIVED FUELS 
1Tver State Technical University, Tver, Russia 
2Tver State University, Tver, Russia 


PP‐19 Dossumov K.1, Yergaziyeva G.2, Myltykbayeva L.2, Telbayeva M.2, Dossumova B.2 


HYDROGEN PRODUCTION FROM METHANE OVER ALUMINA SUPPORTED NICKEL CATALYST 
1Center of Physical and Chemical Methods of Research and Analysis, Almaty, Kazakhstan 
2Institute of Combustion Problems, Almaty, Kazakhstan 
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PP‐20 Díaz M., Epelde Bejerano E., Aguayo A., Bilbao J. 
BOOSTING GASOLINE AND DIESEL PRODUCTION BY 1‐BUTENE OLIGOMERIZATION ON HZSM‐5 
ZEOLITES 
University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain 


PP‐21 Enikeev M.1, Potemkin D.2, Enikeeva L.1, Gubaydullin I.1,3, Enikeev A.3, Maleeva M.4, Snytnikov P.2 
ANALYSIS OF CORROSION PROCESSES KINETICS ON THE SURFACE OF METALS 
1Ufa State Petroleum Technological University, Ufa, Russia 
2Boreskov Institute of Catalysis, Novosibirsk, Russia 
3Institute of Petrochemistry and Catalysis RAS, Ufa, Russia 
4Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow, Russia 


PP‐22 Epelde Bejerano E., Díaz M., Aguayo A., Bilbao J., Gayubo A. 
KINETIC MODEL CONSIDERING CATALYST DEACTIVATION FOR THE TRANSFORMATION  
OF 1‐BUTENE ON K/HZSM‐5 ZEOLITE 
University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain 


PP‐23 Ezdin B.1, Kalyada V.1, Ichshenko A.1, Zarvin A.1, Nikiforov A.1, Snytnikov P.1,2 
PYROLYSIS OF A MIXTURE OF MONOSILANE AND ALKANES IN A COMPRESSION REACTOR TO 
PRODUCE NANODISPERSED SILICON CARBID 
1Novosibirsk State University, Novosibirsk, Russia 
2Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 


PP‐24 Frantsina E.V., Ivanchina E.D., Ivashkina E.N., Belinskaya N.S., Fefelova K.O. 
THE STUDY OF COKE FORMATION IN MODELING THE DEHYDROGENATION OF HYDROCARBONS  
C9‐C14 
National Research Tomsk Polytechnic University, Tomsk, Russia 


PP‐25 Gancarczyk A., Sindera K., Iwaniszyn M., Korpyś M., Kołodziej A. 
TRANSPORT PHENOMENA IN RVC FOAMS 
Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland 


PP‐26 Gao M.1,2, Li H.1, Ye M.1, Liu Z.1 
A REACTION‐DIFFUSION MODEL FOR BRIDGING BETWEEN ZEOLITES AND CATALYST PELLETS IN 
MTO PROCESS 
1Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China 
2University of Chinese Academy of Sciences, Beijing, China 


PP‐27 Gavrilova N.N., Myachina M.A., Ardashev D.V., Nazarov V.V., Skudin V.V. 
SYNTHESIS OF MEMBRANE CATALYSTS BASED ON MESOPOROUS SUPPORT FOR DRY 
REFORMING OF METHANE 
D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia 


PP‐28 Gonzalez‐Rangulan V.V., Reyero I., Moral A., Bimbela F., Gandia L.M. 
ON THE DEVELOPMENT OF HIGHLY‐ACTIVE Ni‐BASED CATALYSTS FOR CO2 METHANATION: 
EFFECTS OF THE SUPPORT AND ACTIVATION TEMPERATURE 
Public University of Navarre, Pamplona, Spain 


PP‐29 Gosiewski K., Pawlaczyk‐Kurek A. 
AERODYNAMIC CFD SIMULATIONS OF EXPERIMENTAL AND INDUSTRIAL THERMAL FLOW 
REVERSAL REACTORS 
Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland 


PP‐30 Hardy B., Winckelmans G., De Wilde J. 
A PENALIZATION METHOD FOR THE DIRECT NUMERICAL SIMULATION OF LOW‐MACH 
REACTING GAS‐SOLID FLOWS 
Catholic University of Louvain, Louvain‐la‐Neuve, Belgium 
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PP‐31 Hirche D., Hinrichsen O. 
NUMERICAL STUDY ON EFFECTS OF BUILT‐IN IMPEDIMENTS IN AN ANAEROBIC FLUIDIZED BED 
MEMBRANE REACTOR FOR FOULING MITIGATION 
Technical University of Munich, Munich, Germany 


PP‐32 Ibrasheva R.Kh., Yemelyanova V.S., Dossumova B.T., Shakiyev E.M., Baizhomartov B.B.,  
Shakiyeva T.V. 
MAGNETICALLY CONTROLLED OXIDATIVE CRACKING OF FUEL OIL TO PRODUCE LIGHT 
PETROLEUM PRODUCTS 
"Scientific and Production Technical Center "Zhalyn" LLP, Almaty, Kazakhstan 


PP‐33 Ivanchina E.D.1, Ivashkina E.N.1, Chuzlov V.A.1, Belinskaya N.S.1, Dementyev A.Y.2 
FORMATION OF THE COMPONENT COMPOSITION OF BLENDED HYDROCARBON FUELS AS THE 
PROBLEM OF THE MULTIOBJECT OPTIMIZATION 
1National Research Tomsk Polytechnic University, Tomsk, Russia 
2PJSC “KINEF”, Tomsk, Russia 


PP‐34 Klenov O.P., Noskov A.S. 
INFLUENCE OF INPUT CONDITIONS ON A FLOW DISTRIBUTION IN TRICKLE BED REACTORS 
Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 


PP‐35 Koci P., Boutikos P., Brezina J., Pecinka R., Hnatkova A., Šourek M., Plachá M.  
METAL OXIDES FORMATION ON Pt/Al2O3 and Pd/Al2O3 CATALYSTS AND ITS IMPACT ON NO 
OXIDATION 
University of Chemistry and Technology, Prague, Czech Republic 


PP‐36 Kondrasheva N.1, Rudko V.A.1, Kondrashev D.O.2 
HARDWARE COMPLEX FOR CONDUCTING EDUCATIONAL AND SCIENTIFIC WORKS ON COKING 
HYDROCARBON AND CARBON‐CONTAINING RAW MATERIALs 
1St. Petersburg Mining University, St. Petersburg, Russia 
2PJSC «Gazprom Neft», St.‐Petersburg, Russia 


PP‐37 Korica N., Mendes P.S., Marin G.B., Thybaut J.W. 
MIXTURE EFFECT ON ALKANE and CYCLOALKANE HYDROCONVERSION OVER Pt/USY CATALYST 
Ghent University, Ghent, Belgium 


PP‐38 Korsunskiy B.L.1,2, Samoilenko N.1, Shatunova E.1, Bostandzhiyan V.1 
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